Workflow
VLA可以赋于强化学习更智能的场景应用......
具身智能之心·2025-10-17 12:01

强化学习在机器人领域的应用 - 强化学习是具身智能机器人(如人形、四足机器人)实现步态控制等复杂任务的核心技术,赋予产品适应救援、测量、危险环境的能力 [3] - 机械臂的视觉语言动作模型与强化学习结合方案在学术领域越来越受欢迎,使机器人执行任务更高效顺畅 [4][9] 论文辅导课程核心信息 - 课程目标为帮助学员产出一篇符合RAL/ICRA/IROS/CoRL等顶级会议或期刊要求的论文初稿,涵盖论文IDEA确认、项目实现、实验指导、写作润色全流程 [8][10] - 课程周期为14周核心在线集中辅导加8周维护答疑,采用6人小班制,配备专属助教 [8][10][18] - 课程提供四足机器人、人形机器人、机械臂、VLA+RL四个大方向的可创新研究idea,每个题目均配备场景与基线代码 [19][30] 课程内容与产出 - 课程基于最新的Isaac Lab等仿真训练环境,提供SAC/PPO/BC/Diffusion Policy等基线代码,并涵盖sim2real/real2sim2real完整技术流程 [18][19][23] - 学员将完成从强化学习基础、仿真环境搭建到具体机器人任务训练(如复杂地形行走、灵巧操作)的系列实战,最终交付论文初稿v1.0及定量分析报告 [23][24][29] - 课程评测标准包括成功率、能耗、步态、接触冲击、鲁棒性等指标,并要求进行不少于5次随机种子的统计显著性检验流程 [19] 师资与特色 - 授课导师为来自美国顶尖高校的博士后研究员,在RSS、ICRA、IROS、RAL等顶级会议期刊有发表经验并担任审稿人 [27] - 课程特色为科研全闭环陪跑,包括每周里程碑、组会、代码/实验复盘、写作修改建议,结营后提供8周论文维护支持(补实验、改图、润色与审稿回复) [18][25][36]