GPT-5≈o3.1!OpenAI首次详解思考机制:RL+预训练才是AGI正道
量子位·2025-10-20 11:46

模型演进与定位 - GPT-5可被视为o3模型的迭代版本,即o3.1,其思考过程与o3一脉相承[1][4][23] - o1模型是公司第一个正式的推理模型,更侧重于技术演示,擅长解决谜题而非作为实用产品[15][17][18] - o3模型代表了AI发展的结构性转变,是首个真正实用、能熟练使用工具并持久寻求答案的模型[19][20][22] - 公司未来的方向是构建能力更强、思考时间更长、能自主与多系统互动的模型,寻求下一个重大飞跃[4][24] 模型推理过程 - 模型的推理过程类似于人类思考,是寻找未知答案的过程,可能涉及计算、查找信息或自我学习[11] - 思维链是模型推理的具体表现,通过将模型的思维过程用人类语言口语化表述出来[12] - 模型在推理中花费的时间越长,结果往往会更好,但公司需在推理质量与用户等待时间之间寻求平衡[13][14] - 公司目前将高推理模型与低推理模型同时开放给用户,并将思考时长的选择权交还用户[14] 公司内部架构与文化 - 公司工作结构是自上而下与自下而上结合,整体专注于三到四个核心项目,研究人员在项目内享有自由[31][33] - 研究部门约600人,信息高度透明,公司认为研究受阻的风险远高于知识产权泄漏[33] - 公司能快速发布产品(一年内从o1到GPT-5)得益于良好的运营结构、巨大的发展势头及顶尖人才的高效产出[33] - 员工大量使用内部工具,例如ChatGPT和CodeX,有员工每月为ChatGPT支付200美元费用[9][34] 强化学习(RL)的战略意义 - 强化学习是公司多次转折的关键,语言模型是预训练和强化学习的结合,此为自2019年以来的研究核心[35][36] - 强化学习通过奖励和惩罚机制训练模型,关键在于策略(模型行为)和环境(交互式反馈)[37][38] - GPT-4最初在长回答中缺乏连贯性,是通过基于人类反馈的强化学习(RLHF)解决了该问题,从而创造了“ChatGPT时刻”[41][42][43] - 公司近期在编程竞赛中的优异表现,源于长期使用编程谜题作为测试平台来尝试强化学习想法[45][46] - 强化学习可应用于任何能评估结果并计算反馈信号的领域,但其规模化难度较高,过程精细复杂[47][48][49] 行业影响与外部贡献 - DeepSeek团队提出的GRPO(组相对策略优化)算法获得肯定,其开源推动了美国实验室更快地训练推理模型[7][51] 未来方向与AGI路径 - AI智能体化是大势所趋,由基础推理驱动的智能体允许模型长时间独立思考以解决编程、预订等复杂任务[53] - 模型对齐问题本质上是一个强化学习问题,旨在引导模型行为符合人类价值观,且该问题将随文明演进永无止境[54] - 通往AGI的道路上,预训练和强化学习二者缺一不可,公司反对“纯强化学习是唯一途径”的观点[56][57] - 公司相信目前走在正确的AGI道路上,未来的变化将是添加新的复杂组件,而非完全推翻现有架构[59]