WorldVLA模型框架概述 - 提出WorldVLA统一框架,融合视觉语言动作模型与世界模型,旨在让AI理解世界 [1] - 该框架由阿里巴巴达摩院、湖畔实验室和浙江大学共同提出 [1] - 实验结果表明,WorldVLA表现显著优于独立的动作模型与世界模型,体现二者相互增强效应 [2] 技术架构与实现细节 - 基于Chameleon模型初始化,使用三套独立分词器对图像、文本和动作进行编码 [8] - 图像分词器采用VQ-GAN模型,压缩比为16,码本大小为8192 [8] - 对于256×256图像生成256个token,对于512×512图像生成1024个token [8] - 动作分词器将连续机器人动作每个维度离散化为256个区间,动作由7个token表示 [8] - 提出针对动作生成的替代注意力掩码,使自回归框架能并行生成多个动作 [11][12] 模型性能评估 - 在无预训练情况下,WorldVLA(256×256)平均成功率为79.1%,优于OpenVLA的76.5% [19][21] - WorldVLA(512×512)平均成功率提升至81.8%,显示模型性能与图像分辨率呈正相关 [21][22][23] - 引入世界模型后,动作模型平均成功率从62.8%提升至78.1% [25][26] - 在视频生成质量上,WorldVLA在50帧序列的FVD指标为674.1,优于纯世界模型的718.6 [32] 技术优势与应用前景 - 世界模型通过预测未来图像学习环境物理规律,提升动作生成准确性 [5][25] - 动作模型基于图像观测生成后续动作,反向促进世界模型视觉生成能力 [5][17] - 框架结合VLA抽象思考与世界模型物理感知,被视为通往具身智能的路径 [36][37]
阿里新研究:统一了VLA和世界模型