Workflow
杨植麟带 Kimi 团队深夜回应:关于 K2 Thinking 爆火后的一切争议
AI前线·2025-11-11 14:42

文章核心观点 - 月之暗面公司发布并开源了Kimi K2 Thinking模型,该模型被定位为“模型即Agent”,在多项关键基准测试中表现优异,甚至超越了GPT-5、Claude 4.5等顶级闭源模型[2][10] - 该模型的核心创新在于其“原生智能体”设计,通过KDA注意力机制、原生INT4量化等系统性工程优化,实现了在推理、编码、搜索和写作等任务上的能力跃迁,标志着开源模型首次具备正面对抗闭源巨头的实力[27][28][30][41] 模型性能与基准测试 - 在HLE基准测试中,Kimi K2 Thinking得分44.9,高于GPT-5的41.7和Claude 4.5的32[12] - 在BrowseComp测试中,Kimi K2 Thinking得分60.2,显著高于GPT-5的54.9和Claude 4.5的24.1[12] - 在AIME25数学推理测试中,Kimi K2 Thinking达到99.1%,与GPT-5的99.6%和Claude 4.5的100%几乎持平[12] - 模型支持256k上下文窗口,输入定价为每百万tokens 0.60美元,输出定价为每百万tokens 2.50美元,具备成本优势[12] - 模型可稳定完成200-300次连续工具调用,远超竞争对手的数十次水平[12][29] 技术创新与架构 - 模型引入了关键的KDA注意力机制,采用“增量更新+门控”方式,解决了MoE模型长上下文一致性差和KV缓存大的问题,相关设计思想将延续到下一代K3模型[15][38] - 通过采用原生INT4量化感知训练,模型在几乎不损失精度的前提下,推理速度提升约两倍,显存占用显著下降[35][36] - KDA机制通过增量式计算将KV缓存与显存开销减少约75%,结合MoE架构,共同保障了模型在长推理任务中的稳定表现[38][39] 团队回应与未来规划 - 公司联合创始人杨植麟确认团队正在开发视觉语言模型[18] - 对于网传的460万美元训练成本,公司澄清并非官方数据,强调训练成本难以量化[20] - 团队承认模型在响应速度上相比GPT-5有5-10倍差距,但解释这是为追求思维深度所做的权衡,并正在积极提升token效率[20][21] - 团队认可用户关于模型输出存在“slop问题”的反馈,表示已在减少语言啰嗦重复方面取得进展,并计划在未来版本中提升情绪表达的真实性和开放性[23][25] 应用能力与市场定位 - 模型在SWE-bench Verified编码基准测试中达到71.3%,展现出“智能体级”开发能力,能够完成从需求理解到调试验证的完整闭环[32] - 在智能搜索任务中,模型具备“边搜索边推理”的能力,能够通过多轮“思考-工具调用”循环处理复杂问题[34] - 模型在创意写作和学术研究场景中表现出色,能将零散灵感组织成结构清晰的长篇文本,并保证逻辑一致性[35] - 此次发布被视为公司在行业空窗期的一次“翻身仗”,为开源阵营提供了对抗闭源巨头的底气[27]