端到端自动驾驶算法工程师的一天
自动驾驶之心·2025-11-15 11:03
端到端自动驾驶技术发展趋势 - 规控算法的学习化已成为绝对主流,基于规则的算法无法满足高阶智驾需求[4] - 衍生出一段式和两段式等多种算法,其中一段式是目前主流的端到端量产范式[4] - 端到端并非单一模型可解决所有问题,量产涉及模型、数据、场景等多方面经验[4] 主流技术框架与方案 - 两段式框架涉及感知与规划控制的信息传递建模,PLUTO算法是经典实战案例[8] - 一段式框架可实现信息无损传递,性能优于两段式,包括基于VLA和Diffusion等方法[9] - VAD系列是深入掌握一段式方法的关键学习内容[9] 关键算法与应用 - 强化学习可配合Diffusion和自回归模型使用,弥补纯模仿学习的不足[4][11] - 导航信息在自动驾驶中起引导、选路、选道作用,需学习其编码与嵌入方式[10] - 轨迹优化涉及模仿学习与强化学习结合,包括扩散模型和自回归算法实战[12] 量产落地与工程实践 - 时空联合规划作为兜底方案,通过轨迹平滑优化算法保证输出轨迹稳定可靠[13] - 量产经验需从数据、模型、场景、规则等多视角选用合适工具提升系统能力边界[14] - 拥堵加塞等场景需针对性优化强化学习奖励函数,并设计闭环训练方法[2]