文章核心观点 - AI领域顶尖专家杨立昆和李飞飞均指出当前大语言模型的局限性,并强调发展“世界模型”是通往通用人工智能的关键路径[1][3][4] - “世界模型”的核心在于让AI系统具备理解物理世界、进行预测和规划的能力,其灵感来源于动物和人类大脑的智能行为学习机制[5][6][8] - 人类大脑新皮质的生成模型特性(如填补性、逐一性、无法忽视性)是实现模拟、想象和预测的基础,这为构建AI“世界模型”提供了神经科学依据[11][12][13][15][16][20][27][29][31][32] AI专家动态与研究转向 - 杨立昆计划离开Meta,筹备以“世界模型”为核心的AI公司[1] - 李飞飞提出AI未来应聚焦“空间智能”,而非单纯扩大语言模型规模[3] - 两位专家共同认为“世界模型”能弥补当前AI系统在物理理解、行为预测等方面的不足[4][6] 当前AI系统的局限性 - AI无法产出完全接近现实的视频,也未发明出能完成家务的实用机器人[5] - 系统缺乏对物理世界的理解,如距离、大小、远近等基本概念[5][6] - 过度依赖语言和符号,忽视了动物所展现的更基础、更早进化的智能行为[6] 人类感知特性与生成模型 - 人类感知具有三大属性:填补性(自动补全缺失信息)[12][13]、逐一性(一次只能选择一种解释)[15][17]、无法忽视性(一旦形成解读便难以推翻)[16][20] - 亥姆霍兹提出感知是“推断”过程,即大脑模拟现实而非直接感知输入[20][27] - 杰弗里·辛顿的“亥姆霍兹机器”通过生成与识别模式切换,实现了无监督学习手写数字识别与生成[21][22][25][26] - 生成模型能解释人类幻觉、做梦、睡眠及想象等机制,新皮质在生成模式下可模拟现实[27][28][29] “世界模型”的智能行为基础 - 大脑新皮质支持规划、情景记忆和因果推理等高级智能行为[33] - 想象力与感知共享同一系统,想象时瞳孔扩张,实际视觉处理暂停[30] - 预测能力依赖持续对比模拟数据与实际感觉,异常触发即时反应(如踩空警觉)[31][32] 行业应用与前沿探索 - 麦克斯·班尼特通过研究大脑进化史,著书《智能简史》架起神经科学与AI的桥梁[10][35] - 其创立的AI公司Alby致力于整合大语言模型至企业网站,提升智能化导购与搜索体验[37] - 班尼特曾联合创立的Bluecore估值突破10亿美元,为全球顶尖公司提供AI技术服务[37]
AI为啥不懂物理世界?李飞飞、杨立昆:缺个「世界模型」,得学大脑新皮质工作
量子位·2025-11-17 21:23