轻舟智航最新!GuideFlow:端到端轨迹规划新方案,超越一众SOTA......
自动驾驶之心·2025-11-26 08:04

文章核心观点 - 北交&轻舟智航等团队提出新型端到端自动驾驶规划框架GuideFlow,基于Constrained Flow Matching显式建模流匹配过程,解决多模态轨迹生成中的模式坍塌问题[2][3] - 核心创新在于将显式约束直接嵌入流匹配生成过程,通过速度场约束、流状态约束和EBM流优化三种策略确保轨迹满足物理和安全约束[3][11] - 框架将驾驶激进度参数化为生成过程控制信号,实现对轨迹风格的精准调控,在主流驾驶基准数据集上取得当前最优性能,Navhard子集EPDMS分数达43.0[3][15][37] 背景回顾 - 端到端自动驾驶将感知、预测和规划构建为统一系统,支持跨任务推理并减轻级联误差问题,但传统单模态规划器无法反映驾驶场景不确定性[9] - 多模态规划方法基于模仿学习训练,因每个场景仅提供一条真实轨迹而出现模式崩溃,生成式方法虽提升多样性但难以保证约束满足[10] 算法框架 - GuideFlow包含感知条件速度场生成器、无分类器引导和安全约束采样三大模块,通过交叉注意力融合智能体令牌与地图令牌实现场景条件建模[20][21] - 采用无分类器引导训练框架,以概率掩码处理条件输入,通过引导尺度控制驾驶意图信号对运动的影响强度[23][24] - 约束生成模块中,速度场约束调整运动方向与参考方向对齐,流状态约束采用类截断策略修正偏离流路径,EBM流优化将约束执行融入能量图景[25][28][31] 实验结果 - 在NavSim数据集Navhard高难度子集上取得SOTA性能,EPDMS分数达43.0,较此前最佳结果提升1.3分[15][37] - Bench2Drive数据集上驾驶分数达75.21,成功率51.36%,优于UniAD、VAD等端到端基线模型[35][39] - 开环测试中,NuScenes数据集平均碰撞率0.07%,ADV-NuScenes数据集0.73%,在短时域预测中可靠性显著[40][41] 技术细节 - 消融实验显示规划锚点引导变体性能最优,EPDMS得分29.0,因锚点封装更丰富的决策信息[43] - 流状态约束与EBM流优化模块组合使用时性能最佳,EPDMS得分27.1,三种约束方法具有互补性[44][45] - 超参数敏感性分析表明,λ值超过0.1会过度干扰速度场,CF模块修正时机需平衡偏差修正与场景适应性[46][47]