SLAM与视觉语言/目标导航有什么区别?
具身智能之心·2025-11-27 08:04

行业技术定义与核心 - 具身导航是具身智能的核心领域,涉及语言理解、环境感知、路径规划三大技术支柱 [2] - 目标驱动导航是具身导航中最具代表性的方向,要求智能体在陌生三维环境中,仅凭目标描述即可自主完成环境探索与路径规划 [2] - 该技术实现了从依赖显式指令的“听懂指令走对路”到自主决策的“看懂世界自己找路”的跃迁,背后凝聚着计算机视觉、强化学习与3D语义理解的交叉突破 [2] 产业化落地与应用场景 - 在终端配送场景,美团无人配送车通过动态路径重规划在复杂城市环境中执行任务,Starship Technologies的园区配送机器人已在欧美高校和社区部署 [4] - 在医疗、酒店及餐饮场景,嘉楠科技、云迹科技、擎朗智能的商用服务机器人以及美国Aethon公司的TUG系列,已实现药品、文件和餐食的自主配送 [4] - 随着人形机器人发展,导航技术适配性升级成为新焦点,宇树科技Unitree系列通过Habitat预训练完成基础导航任务,智元机器人在工业场景集成该模块,特斯拉Optimus展示了“取放电池”等端到端操作能力 [4] 技术生态与评测体系 - 基于Habitat仿真的具身导航生态完整记录了领域技术迭代轨迹,自2020年CVPR提出点导航基准以来,评测体系逐步扩展至图像导航、目标导航及移动抓取任务 [5] - 技术进展呈现明显梯度:点导航和闭集物体导航接近人类表现,但开放词汇物体导航和动态障碍物场景仍面临重大挑战 [5] - Meta AI提出的Sim2Real迁移框架为仿真训练到真实部署提供了方法论参考,CMU与Stanford等机构持续推动动态环境下的语义地图更新技术 [5] 三代技术路线迭代 - 第一代端到端方法:基于强化学习与模仿学习框架,在点导航与闭集图片导航任务中取得突破,部分方法的SPL指标已逼近人类表现 [6] - 第二代模块化方法:通过显式构建语义地图将任务分解,在零样本目标导航任务中展现显著优势,在未见物体场景下成功率提升明显 [8] - 第三代LLM/VLM融合方法:引入大语言模型的知识推理能力生成语义指导的探索策略,并通过视觉语言模型提升开放词汇目标匹配精度,当前研究重点在于设计场景表征接口 [10] 相关课程内容与结构 - 课程旨在解决目标驱动导航领域技术栈多、入门困难、知识碎片化、缺乏实战指导等挑战 [11] - 课程特点包括:基于Just-in-Time Learning理念快速入门、帮助学员构建领域框架与研究能力、理论结合实践完成闭环 [11][12][13] - 课程大纲共六章,系统覆盖语义导航核心框架、Habitat仿真生态、端到端导航方法论、模块化导航架构、LLM/VLM驱动的导航系统以及大作业 [15][17][18][19][20][21][22] - 大作业聚焦VLFM算法复现与真实场景部署,实践流程包括占据地图构建、边缘探索点生成与排序、值地图生成、导航策略构建及算法改进与实机部署探索 [23][27] - 课程为期3个月,采用离线视频教学配合VIP群答疑,进度安排覆盖从概述、仿真环境到三代核心方法的理论与实战,最终完成大作业 [28][29]