腾讯研究院AI速递 20251128
腾讯研究院·2025-11-28 00:21

谷歌TPU自研芯片进展 - 谷歌TPU从2015年发展至2025年第七代TPU(代号Ironwood),成为可能撼动英伟达霸权的战略级武器[1] - TPU v7单芯片FP8算力达4.6 petaFLOPS,一个Pod集成9216颗芯片性能超42.5 exaFLOPS,采用2D/3D环面拓扑结合光路交换网络,年可用性达99.999%[1] - 谷歌垂直整合策略使其避免了昂贵的CUDA税,推理成本较GPU系统低30%-40%[1] - Meta考虑2027年在数据中心部署TPU并通过谷歌云租用算力[1] Anthropic长程Agent技术突破 - Anthropic发布针对长程Agent的双Agent架构解决方案,包括初始化Agent负责搭建环境和编码Agent负责增量进展,解决Agent跨会话工作的记忆难题[2] - 环境管理包含功能列表(200+功能点标记状态)、增量进展(Git提交和进度文件)和端到端测试(使用Puppeteer浏览器自动化)三大支柱[2] - 该方案基于Claude Agent SDK,通过让Agent像人类工程师一样在会话间保持一致进度,成功实现跨数小时甚至数天的复杂任务[2] DeepSeek数学模型创新 - DeepSeek发布基于DeepSeek-V3.2-Exp-Base的DeepSeek-Math-V2,实现IMO金牌级水平,性能优于Gemini DeepThink[3] - 创新引入自我验证数学推理框架,包含证明验证器(分0/0.5/1三档评分)、元验证(检查评语合理性)和诚实奖励机制(奖励诚实指错的模型)[3] - 在IMO-ProofBench基准的Basic子集上达到近99%高分,Putnam 2024中以扩展测试实现118/120接近满分,突破传统强化学习限制[3] AI音乐行业正版化进程 - AI音乐平台Suno与华纳音乐集团达成全球首个"正版授权AI音乐"合作框架,结束所有法律纠纷,标志AI音乐正版化里程碑[4] - Suno将在2026年推出基于高品质授权音乐训练的新模型,承诺超越现有v5模型,华纳旗下艺术家可自主选择是否授权并获得收入[4] - 免费用户未来无法下载创作音频仅能播放分享,付费用户下载功能保留但有月度额度限制[4] - Suno同时收购华纳旗下演唱会服务Songkick布局线下生态[4] 马斯克Grok 5游戏AI挑战 - 马斯克宣布Grok 5将在2026年挑战《英雄联盟》最强战队T1(由传奇选手Faker领衔),为AI戴上"纯视觉感知"和"人类级反应延迟"双重镣铐[5][6] - Grok 5或将拥有6万亿参数,作为多模态LLM通过"阅读"游戏说明和"观看"比赛视频构建世界模型,依靠逻辑推理而非暴力手速取胜[6] - 马斯克将把Grok 5的视觉-动作模型直接应用于特斯拉Optimus人形机器人,游戏团战作为现实世界的练兵场验证具身智能能力[6] 阿里开源图像生成模型 - 阿里开源6B参数图像生成模型Z-Image,包含Z-Image-Turbo(8步达到主流竞品性能)、Z-Image-Base(非蒸馏基础模型)和Z-Image-Edit(图像编辑专用版本)三个版本[7] - Z-Image-Turbo在企业级H800 GPU上实现亚秒级推理速度,可轻松运行于16G显存消费级设备,在照片级写实生成和中英双语文字渲染方面表现突出[7] - 采用可扩展单流DiT(S3-DiT)架构,将文本、视觉语义token与图像VAE token在序列维度拼接为统一输入流,最大化参数利用效率[7] 无问芯穹融资与AI基建进展 - 清华AI Infra企业无问芯穹完成近5亿元A+轮融资,由珠海科技集团、孚腾资本领投,成立2年半累计获得近15亿元融资[8] - 无穹AI云首次实现六种不同品牌芯片间交叉混合训练,算力利用率最高达97.6%,已在全国完成超25000P算力纳管,覆盖26城市53个数据中心[8] - 推出端侧全模态理解模型无穹天权(3B成本、7B内存需求达21B级智能水平)和终端推理加速引擎无穹开阳(3倍时延降低、40%能耗节省),打造Agentic Infra[8] 清华大学AI教育指导原则 - 清华大学正式发布《人工智能教育应用指导原则》,提出"主体责任""合规诚信""数据安全""审慎思辨""公平包容"五大核心原则[9] - 指导原则明确禁止将AI生成内容直接作为学业成果提交,严禁用AI代替学术训练、代写论文等行为,要求教师对AI生成教学内容负责[9] - 清华已有超390门课程融入AI教学实践,自主研发"三层解耦架构"和全功能智能体学伴"清小搭",历时两年调研全球25所高校70份指南完成制定[9] 美国创世纪AI科研计划 - 美国启动"创世纪计划"(US Genesis Mission)作为AI曼哈顿计划,目标是训练科学基础模型、打造科研智能体,让AI深度嵌入科研全流程[10] - 能源部科学事务副部长Darío Gil在《科学》杂志发表社论,强调AI价值在于生成可验证结果而非仅写摘要,需动员国家实验室、企业和顶尖大学[11] - 《自然》同期发表社论提出"神经符号AI"路径,将大模型统计学习与符号推理、规划模块组合,可能是迈向接近人类水平智能的关键[11]