死磕技术的自动驾驶黄埔军校,又更新了这些技术进展......
自动驾驶之心·2025-12-07 10:05

文章核心观点 - 文章旨在推广“自动驾驶之心知识星球”社区,该社区定位为国内首个自动驾驶全栈技术交流平台,汇集学术界与工业界资源,为从业者及学习者提供全面的技术内容、学习路线、行业资讯及求职内推服务 [8][25] - 社区核心价值在于降低行业入门壁垒,通过体系化的知识梳理和专家互动,帮助成员应对技术快速迭代和行业竞争,目标是打造一个近万人的技术分享与交流聚集地 [8][26] 社区概况与规模 - 社区已运营超过三年,是一个集视频、图文、学习路线、问答、求职交流为一体的综合类自动驾驶社区 [8] - 目前社区成员已超过4000人,成员来自近300家机构与自动驾驶公司,目标在未来2年内做到近万人的规模 [8][104] - 社区成员背景多元,包括上海交大、北京大学、CMU、清华大学等国内外知名高校实验室,以及蔚小理、地平线、华为、英伟达、小米汽车等头部公司 [25] 内容体系与技术覆盖 - 社区内部梳理了超过40个自动驾驶技术方向的学习路线,内容全面覆盖从基础到前沿的各个领域 [11][14] - 技术方向具体包括:自动驾驶感知(如BEV感知、3D目标检测)、规划控制、端到端自动驾驶、VLA(视觉-语言-动作模型)、世界模型、多传感器融合、自动驾驶仿真、3DGS(3D Gaussian Splatting)、NeRF、扩散模型、Occupancy Network、视觉语言模型(VLM)、在线高精地图等 [11][16][25][34][45][47][49][51][53][56][58][60][64][65] - 提供了近60个自动驾驶相关数据集的汇总,包括通用CV数据集、感知数据集、轨迹预测数据集,并详细梳理了自动驾驶VLM的预训练、微调及思维链数据集 [43] - 汇总了近40个开源项目,涵盖3D目标检测、BEV感知、世界模型、自动驾驶大模型等多个领域,助力快速上手实践 [41] 学习资源与课程 - 社区提供原创的系列视频教程,涵盖感知融合、多传感器标定、SLAM与高精地图、决策规划与轨迹预测、自动驾驶数据工程、2D/3D目标跟踪、自动驾驶仿真、端到端自动驾驶及大模型技术等八大方向 [17] - 为入门者准备了全栈方向的学习课程,包括数学基础、计算机视觉、深度学习、编程等资料,以及经典书籍和课程课件汇总,适合0基础学习者 [16][19] - 设有“自动驾驶100问”系列专题,内容涉及TensorRT模型部署、毫米波雷达融合、车道线检测、规划控制面试、BEV感知、相机标定、3D&4D毫米波雷达等工程实践问题 [16] 行业交流与活动 - 社区不定期邀请一线学术界与工业界大佬进行直播分享,目前已举办超过一百场专业技术直播,内容可反复观看 [12][92] - 直播分享主题前沿,例如:完全开源性能SOTA的端到端VLA模型“Impromptu VLA”、基于快慢神经符号系统的道路拓扑推理、让自动驾驶用自然语言交流的V2X研究、通用3D检测基础模型“DetAny3D”、基于扩散模型的规划算法“Diffusion Planner”等 [93] - 社区内部建立了与多家自动驾驶公司的岗位内推机制,可第一时间将成员简历推送给心仪公司 [17] - 日常交流问题涵盖技术学习、职业发展、行业趋势等,例如:端到端自动驾驶如何入门、多传感器融合就业前景、业内公司跳槽选择、博士研究方向等 [11][15][30] 社区特色与附加价值 - 社区致力于解答成员的各类实用问题,并提供快速解答,方便应用到实际项目中 [11] - 汇总了国内外自动驾驶与机器人领域的高校实验室和公司信息,为成员升学、求职提供参考 [35][37] - 打造了一个交流+技术分享的聚集地,旨在让初学者快速入门,让进阶者提升技能,并结交行业人脉 [8][26]