核心观点 - 华科王兴刚教授团队提出DiffusionDriveV2,通过引入强化学习解决了其前代模型DiffusionDrive在端到端自动驾驶轨迹规划中面临的“多样性与持续高质量”两难困境 [1][3] - 该方法创新性地结合了锚点内GRPO、锚点间截断GRPO与尺度自适应乘法探索噪声,在保留多模态生成能力的同时,显著提升了轨迹的整体输出质量与安全性 [4][12] - 在NAVSIM v1和v2数据集的闭环评估中,DiffusionDriveV2结合ResNet-34主干网络取得了当前最优性能,PDMS分别达到91.2和85.5,创下新纪录 [4][33] 技术背景与问题 - 端到端自动驾驶(E2E-AD)直接从原始传感器输入学习驾驶策略,是当前发展浪潮 [5] - 传统单模态规划器仅回归单一轨迹,无法提供备选方案;基于选择的方法使用静态候选轨迹库,灵活性有限 [5] - 原始扩散模型应用于轨迹生成时面临模式崩溃(mode collapse)问题,倾向于生成保守且单一的轨迹,无法捕捉未来多样性 [5][13] - DiffusionDrive通过预定义轨迹锚点构建高斯混合模型先验,将生成空间划分为对应不同驾驶意图的子空间,从而促进多样化行为生成 [5][13] - 但DiffusionDrive依赖模仿学习,其训练目标仅优化与专家轨迹最接近的“正模式”,对占样本绝大多数的“负模式”缺乏约束,导致生成大量低质量甚至碰撞的轨迹,无法保证持续高质量 [8][17][18] DiffusionDriveV2核心方法 - 整体架构:采用DiffusionDrive作为预训练的轨迹生成器进行冷启动,引入强化学习目标对所有生成模式施加约束并推动探索 [19][21] - 尺度自适应乘法探索噪声:为解决轨迹近端与远端尺度不一致问题,采用纵向与横向乘法高斯噪声替代加法噪声,生成的探索路径更平滑,保留了轨迹连贯性 [24] - 锚点内GRPO:为避免不同驾驶意图(如直行与转弯)间不当的优势比较导致模式崩溃,仅在每个锚点内部生成的轨迹变体组内执行GRPO策略更新 [9][24] - 锚点间截断GRPO:为解决锚点内GRPO优势估计丧失全局可比性的问题,修改优势估计,将所有负优势截断为0,并对发生碰撞的轨迹施加-1的强惩罚,原则是“奖励相对改进,仅惩罚绝对失败” [27][28] - 模式选择器:采用两阶段“粗到细”评分器,结合二元交叉熵损失和Margin-Rank损失,从多模态预测中选择最优轨迹 [29] 实验结果与性能 - 基准测试成绩:在NAVSIM v1测试集上,PDMS达到91.2,相比DiffusionDrive提升3.1;在NAVSIM v2测试集上,EPDMS达到85.5 [4][33] - 模型效率:仅使用2180万参数的ResNet-34主干网络,性能优于基于9690万参数V2-99主干网络的对比方法(如GoalFlow和Hydra-MDP) [33] - 多样性与质量权衡: - 原始扩散方法(如TransfuserTD)多样性得分仅0.1,质量稳定但缺乏多样性 [37] - DiffusionDrive多样性得分高达42.3,但质量无法保证(PDMS@10为75.3) [37] - DiffusionDriveV2多样性得分30.3,在多样性与质量间实现最优权衡,其PDMS@1为94.9(提高上限),PDMS@10为84.4(提高下限) [37][38] - 消融实验验证: - 乘法探索噪声优于加法噪声,PDMS从89.7提升至90.1 [40] - 使用锚点内GRPO使PDMS从89.2提升至90.1 [41] - 使用锚点间截断GRPO使PDMS从89.5提升至90.1 [42] 研究意义与贡献 - 据研究者所知,DiffusionDriveV2是首个直接面对并解决截断扩散模型在轨迹生成中“多样性与持续高质量”两难困境的工作 [12] - 是首个成功将GRPO方法迁移到基于锚点的截断扩散模型的工作 [12] - 该方法证明了强化学习的“探索-约束”范式能有效提高模型性能下限与上限,为端到端自动驾驶规划提供了新思路 [8][38]
时隔一年DiffusionDrive升级到v2,创下了新纪录!
自动驾驶之心·2025-12-11 11:35