张亚勤院士:基础大模型最终不超过10个,十年后机器人比人多 | MEET2026
量子位·2025-12-11 17:00

文章核心观点 新一轮人工智能是信息智能、物理智能和生物智能的融合,在规模定律驱动下,智能从模式识别“涌现”为生成式与推理式AI,并正快速演化为智能体范式[2][3][12] 以ChatGPT和DeepSeek为里程碑,AI发展正从预训练时代迈向以推理为核心的“DeepSeek时刻”,并在高效率、低成本和开源生态中加速落地[4][11][12][14] 未来5-10年,产业将进入“智能体互联网”时代,智能体将取代大部分SaaS和App,成为人机交互的默认形态,这也是通往通用人工智能(AGI)的必经之路[6][12][38][40] AI发展范式演进 - 新一轮AI的本质是三大智能融合:即信息智能、物理智能和生物智能的融合,本质上是原子、分子和比特的融合[2][8][12] - 智能涌现的关键驱动:在规模定律(Scaling Law)持续作用下,当参数规模、数据体量与算力跨过阈值,智能从鉴别式AI“涌现”为生成式AI,再走向以智能体为代表的新范式[3][10][11] - 两大里程碑事件:ChatGPT通过统一表征与token化,将文本、语音、图像乃至蛋白质、点云等数据纳入同一空间,实现了从鉴别式AI到生成式AI的跨越[4][10] DeepSeek则以高效率、高性能、低价格和开源路径,将大模型从“预训练时代”推向以推理为核心的“DeepSeek时刻”[4][11][14] AI发展的五大趋势 - 趋势一:生成式AI正快速演化为智能体:智能体是近两年AI领域最重要的创新,其任务长度在过去七个月增长了两倍,准确度已大于50%,与人类对齐[15][17][18] - 趋势二:规模定律重心转移:规模定律在预训练阶段已放缓,更多智能发展转移至后训练、推理和智能体阶段[19] 推理的单位成本在过去一年下降了10倍,而智能体本身的算力要求一年增长了10倍,两者成本效应相互平衡[19] - 趋势三:从信息智能走向物理与生物智能:大语言模型正走向视觉语言动作模型(VLA)[20] 无人驾驶在2024年已到达“ChatGPT时刻”,预计到2030年(DeepSeek时刻),约10%的新车将拥有L4级无人驾驶能力[20] 机器人是未来最大赛道之一,预计未来10年左右,机器人的数量将超过人类数量[21] - 趋势四:AI风险同步放大:随着智能体的出现,AI相关的风险至少翻倍[22] - 趋势五:开源成为主流生态:开源将成为更大、更主要的平台和生态,预计约80%的模型为开源,20%为闭源[23] 未来产业格局:智能体互联网 - 基础大模型如操作系统般收敛:基础大模型相当于AI时代的操作系统,全球范围内最终将收敛到不超过10个,主要由中美两国引领[6][12][23][35] - 智能体取代传统软件形态:智能体会取代今天的大部分SaaS和手机App,成为企业和个人与世界交互的默认形态[6][30] 未来的企业架构将包含GPU、大模型、数据以及由人和智能体共同构成的人力资源[25] - 形成新的产业架构与经济形态:产业将重构为“基础模型+垂直/边缘模型+智能体网络”的新格局[12][23] 智能体不仅在形成网络,也在形成新的经济形态[25] 整个产业规模将比PC时代、移动时代大一个、两个甚至三个数量级[37] - 是通往AGI的必经之路:智能体互联网是未来5-10年最大的发展方向,也是实现通用人工智能(AGI)的必经之路,需要新的算法体系如记忆体系、世界模型等[12][38][40] 预计未来五年,现有的自回归架构、Transformer、Diffusion等技术可能被颠覆[41] 技术应用与展望 - 医疗智能体案例:清华大学已开发出全球首个医疗智能体无人医院,利用多智能体网络模拟三甲医院,能在两天内完成相当于医院两到三年的病例处理,且准确度更高[31][33] 智能体主要作为医生的助理,未来每位医生都可能拥有自己的智能体[34] - AGI实现时间表:预计需要15-20年时间,依次完成从信息智能到物理智能,再到生物智能的跨越[12][42]