许华哲,抓紧时间慢慢等具身的未来......
具身智能之心·2025-12-16 08:02

文章核心观点 - 行业观察到具身智能领域在2025年存在发展速率与落地现实不协调的现象 具体表现为技术演示与真实世界应用之间存在差距 [6][7][8] - 行业认为中美在具身智能的发展路径上出现分野 中国公司侧重量产与商业化 美国公司侧重探索AI技术上限 行业担忧过度关注确定性量产可能错过最根本的AI技术突破 [9][10][11] - 行业主张具身智能应类比大模型 不应局限于简单、重复的落地场景 而应挑战需要强操作和高泛化能力的困难任务 以训练出高质量的通用模型 [12] - 行业指出具身智能面临数据瓶颈 其发展路径将是预训练与基于真实交互的持续学习螺旋上升 而非一次性完成数据训练 [15] 两个世界的机器梦 - 自2022年、2023年同步起步后 中美具身智能发展路径在2025年出现明显分野 [9] - 中国公司投入更多精力在量产和商业化上 而美国公司如1X Technologies(展示Gen0精细操作)、Figure(展示长程任务能力)、Sanctuary AI(展示持续工作能力)等则致力于展示AI技术上限 [9] - 行业认为机器人本质不同于汽车 AI能力是核心驱动力 需要由AI技术领跑 而非单纯追求量产 [9] - 行业呼吁在具身智能领域应建立原始创新的信心 而非仅采用跟随策略 需要容忍高失败率的探索性研发 [10] 落地简单场景还是挑战困难场景 - 行业观察发现 高价值、高重复性的场景往往已被传统自动化设备解决(例如解决90%的问题) 剩余未自动化场景通常因单价低或重复度低而不具经济性 [12] - 基于此 行业认为具身智能的定位应更接近大模型 不应将资源耗费在简单任务上 而应致力于挑战需要“强操作”和“高泛化”能力的困难场景 [12] - 挑战困难场景有助于训练出高质量的通用模型 从而更广泛地解决问题 尽管向具体场景的早期落地有其价值 可为未来积累迁移经验 [12][13] “预训练”配合“先验学习” - 具身智能面临天然的数据瓶颈 包括仿真数据不足和真机数据缺乏 这一问题将持续存在 [15] - 因此 行业发展不能遵循“先穷尽数据预训练,再探索模型”的线性路径 而需采用“预训练”与“真实世界交互学习”螺旋上升的模式 [15] - 行业认为 足够好的世界模型无法仅从人类采集的数据中训练获得 必须让机器人自主与世界交互才能构建其独有的世界模型 [15] - 行业对未来探索使用统一强化学习目标函数贯穿预训练与后训练的模式表示兴趣 [15]