自变量王潜:具身智能是物理世界的独立基础模型|MEET2026
具身智能之心·2025-12-22 09:22

文章核心观点 - 具身智能模型应被视为一个独立于、平行于语言模型和多模态模型的全新基础模型,是专门为物理世界构建的智能底座 [1][7][60] 物理世界与虚拟世界的本质差异 - 物理世界充满连续性、随机性、不完全可观测性以及大量与力、接触和时序强相关的过程,而虚拟世界(语言/多模态模型所面对)是高度可复现、低随机性的符号世界 [2][10] - 物理事件具有高度随机性,例如用相同的角度和力度推一个杯子,十次可能停在十个不同的地方,这在虚拟世界中几乎不会发生 [10][11][12] - 现有的以语言和视觉为中心的模型架构、训练方法和数据能力,难以精确刻画物理世界的高度随机性现象 [12][16] 现有技术范式的局限性与新模型必要性 - 沿用以语言和视觉为中心的建模范式存在结构性错位,语言和视觉并非描述动作和物理过程的理想工具 [3][16] - 语言只能描述长序列(如10秒以上)事件,难以描述精细操作(如炒菜)[16] - 图像精度优于语言,但仍面临工具使用、遮挡等问题,大量涉及力和接触的过程无法靠语言和图像描述 [18][19] - 因此需要“另起炉灶”,重新训练一个专门供物理世界使用的基础模型,而非仅在现有模型上做微调 [20] 模型架构与学习范式的转变 - 感知和决策层面需要转变思路,人类在物理世界中的学习方式(如Active Perception, Interactive Perception)与虚拟世界中的静态统计学习范式有根本不同 [24][27][28][29] - 物理世界学习通过带有时序、因果和空间信息的连续观察流,以及与环境的主动互动实现,这应是多模态模型未来的重要发展方向 [27][28][29] - 坚持静态、固定的数据学习方式,无法实现人类般高效、节省数据和算力的学习效果 [30] 具身智能基础模型的潜力与影响 - 以十年为周期看,具身智能基础模型有可能反过来吞噬现有多模态模型的生存空间 [12][31] - 构建统一的基础模型应是完全端到端的,这已成为行业共识 [12][32] - 需要设计专门考虑端侧部署和推理的模型架构,以解决推理速度等权衡问题,而非沿用旧架构 [33] - 具身智能模型应是一个集成了语言能力、世界模型能力、视频生成能力和三维重现能力的统一模型 [39][40] 数据与Scaling Law - 数据的Scaling Law在机器人领域被认为是最困难的事情之一 [46] - 现实世界的数据应是最主要的来源,训练应分阶段(预训练、后训练),并发现了第三个Scaling Law:在推理时通过思维链等方式拓展模型能力 [48] - 物理世界适合持续学习范式,即端侧实时更新数据,进行体验式学习,这本质优于集中式批次训练,但带来体系架构、系统和硬件上的新挑战 [51][52] 软硬一体与AI定义硬件 - 需要让AI定义硬件,而非先制造完美硬件再适配AI模型 [53] - 公司坚持软硬一体同步发展,已实现两款全自研轮式底盘人形机器人及高自由度灵巧手,并开始市场销售 [54] - 实现了跨本体泛化,例如从夹爪模型迁移到20个自由度(15个主动自由度)的灵巧手,仅需非常少量样本,表明模型已学会基础物理规律和动作模式 [36] - 在高度复杂任务上,实现了超过人类遥操作训练速度的1倍速实时控制,并维持高准确率 [33][34] - 公司自研的WALL-OSS是领先的开源物理世界基础模型,具备VLA模型控制机器人、良好泛化、智能跟随及构建长序列思维链解决复杂问题的能力 [41][44] 具身智能的宏观重要性 - 普遍观点低估了具身智能的发展和影响,认为语言、数学、代码等领域比具身智能有本质重要性,但此观点存在隐藏假设 [54] - 创造超越人类的AGI/ASI所需的一切资源(算力、芯片、电力、能源、数据)都来自物理世界 [54] - 当前物理世界未出现指数级增长的核心卡点是“人手的劳动”,几乎所有商品和服务都无法脱离这一步 [57][58] - 若具身智能实现,万事万物可遵循类似芯片摩尔定律的发展规律,从而带来更多资源以创造更聪明的ASI,走向真正的通用智能未来 [59]