下周开课!我们设计了一份自动驾驶世界模型学习路线图....
自动驾驶之心·2025-12-24 17:22

自动驾驶世界模型技术趋势与课程核心内容 - 世界模型并非端到端自动驾驶本身,而是实现端到端自动驾驶的一种途径[2] - 当前行业将自动驾驶世界模型的研究收敛于生成和重建两大领域,并主要用于闭环仿真[2] - 行业正经历风格转换,因处理Corner Case成本过高,需寻求更有效的手段[2] - 近期世界模型相关研究呈现爆发式增长[2] 课程结构与核心知识点 - 课程共分六章,从概述、背景知识到专题应用,系统讲解世界模型[5][6][7][8][9] - 第一章阐述世界模型与端到端自动驾驶的联系、发展历史、应用案例及不同技术流派[5] - 第二章涵盖世界模型所需基础技术栈,包括场景表征、Transformer、BEV感知等[5] - 第三章聚焦通用世界模型,解析Marble、Genie 3、JEPA、DriveVLA-W0及特斯拉世界模型模拟器等前沿工作[6] - 第四章专注视频生成类世界模型,涵盖GAIA-1、GAIA-2、UniScene、OpenDWM、InstaDrive等,并以OpenDWM进行实战[7] - 第五章讲解基于OCC生成的世界模型,涉及OccWorld、OccLLaMA、HERMES、II-World等三大论文及一个项目实战[8][12] - 第六章为工业界应用与岗位专题,分享行业痛点、应用现状及面试准备经验[9] 课程技术深度与目标人群 - 课程深度覆盖BEV感知、多模态大模型、3DGS、扩散模型、NeRF、VAE、GAN等关键技术[11] - 课程面向具备一定自动驾驶基础、了解Transformer/扩散模型/BEV感知基本概念、有Python/PyTorch基础的学习者[13] - 学习目标为使学员达到约1年经验的自动驾驶世界模型算法工程师水平,能够复现主流算法并应用于实际项目[13] - 课程为离线视频教学,配备VIP群答疑及三次线上答疑,答疑服务截止2026年12月31日[14] - 课程自1月1日开课,预计两个半月结课,各章节按计划在12月10日至次年3月1日期间逐步解锁[14][15]