世界模型和数字孪生的本质是什么?怎么赋能自动驾驶?
自动驾驶之心·2025-12-29 09:07

世界模型与数字孪生概述 - 自动驾驶领域的研究离不开世界模型和数字孪生,核心目标是为感知模型构建虚拟训练环境并缩小其与真实世界的差距[5] - 世界模型的本质目的是理解世界动态并预测未来场景,所有研究路径均以此为核心共识[7] - 数字孪生的作用是在虚拟世界中定义自动驾驶车群的各个环节与要素,通过自由切换时空来低成本、高效率地研究关键技术,从而驱动现实世界技术的发展与落地[19] 世界模型的定义与发展 - 世界模型存在概念泛化问题,当前定义的核心是以视频为底座的“时空认知”,需要大量视频数据,游戏是重要的训练数据来源[7] - 研究分为两大分支:“内部表示”学派用潜在变量建模环境以辅助决策,“未来预测”学派生成真实视频并转向具身交互[7] - 具身环境的世界模型正从单纯模拟视觉动态,转向构建包含空间结构和物理交互的沉浸式环境,以为智能体提供全面学习平台[8] - 世界模型的发展历程包括:心理学起源(1971)、Ha等人首次系统构建(2018)、LeCun的JEPA框架(2022)、LLMs的隐性世界知识(2023)以及OpenAI的Sora实现显性模拟(2024)[10] 世界模型的核心要求与应用方向 - 世界模型需具备物理一致性、多尺度时空建模(从毫秒到分钟,从厘米到公里)以及因果推理能力[11] - 三大核心应用方向包括:作为基础模型的预训练方式、用于仿真和数据生成以补充真实数据不足、以及进行端侧推理以实现实时环境变化预测[11] - 在自动驾驶中,世界模型需要实时感知路况并准确预测其演变;在机器人技术中,则对导航、物体检测和任务规划等任务至关重要[11] 世界模型的技术路径与场景构建 - 3D高斯可能是最有前景的表征方式,但需解决核函数优化问题;神经辐射场(NeRF)与动态建模的组合也值得探索;分层建模可为不同目的服务[12] - 室内环境构建从纯视觉发展到多模态、社交交互及LLM驱动指令生成;室外环境构建早期通过检索3D资产,突破性进展包括使用3D生成模型构建可定制城市(如UrbanWorld)和程序生成的沙盒环境(如MineDOJO)[12] - 动态环境构建实现革命性转变,从静态预定义环境转向生成式模型实时动态模拟,代表工作有UniSim、Pandora和Streetscapes[12] 自动驾驶中世界模型的应用形态 - 学习隐式表示:通过感知数据在潜在空间构建世界状态的抽象表征,将多模态输入转化为几何/语义空间以预测交通参与者未来轨迹与行为,技术演进从PointNet、CNN到Transformer多摄像头BEV融合及多模态LLM应用[16] - 世界模拟器:直接生成车辆感知数据(如视频、3D占据网格)以模拟未来世界状态,传统几何空间模拟存在信息丢失、计算昂贵等局限,视频生成方案(如扩散模型GAIA-1/DriveDreamer)能直接生成逼真相机数据并支持文本控制[16] - 数据的表示形态包括图像/视频(如GAIA-1生成多视角驾驶视频)和BEV鸟瞰图(如BEVWorld统一感知-预测-规划)[16] 自动驾驶中世界模型的具体应用与车企落地 - 主要优势在于生成罕见场景(Corner Case),以降低实车路测成本,案例如MagicDrive3D实现可控3D场景生成,DriveDreamer-2用LLM增强多样性[17] - 支持端到端驾驶,如BEVWorld通过统一潜在空间整合感知、预测和规划,实现端到端优化[17] - 交通场景模拟可在几何空间、视频空间(基于扩散的视频生成模型)和3D空间(如OccWorld预测3D占据网格)中进行[17] - 车企落地情况:蔚来有NWM世界模型提供仿真闭环训练环境;小米有ORION框架集成仿真工具链;Wayve有GAIA-1生成式世界模型支持多模态条件[17] 数字孪生的层次与相关技术 - 数字孪生体现在多个层次:物理世界建模/数字化(将现实世界映射到虚拟空间)、模型迭代(利用虚拟环境数据训练感知模型)以及系统迭代(在仿真软件中研究系统并找出解决方案)[20][21] - 相关技术包括:3D占用网格(如OccSora)、点云预测(如Copilot4D预测雷达点云变化)、混合表示(如MaskGWM结合视频掩码重建)、利用LLM进行场景理解(如TOKEN将交通场景标记为对象级知识)以及运动预测(如Trajectron++预测多智能体轨迹)[22] 倾斜摄影三维重建流程 - 流程包括:图像预处理(畸变校正、曝光均衡)、空中三角测量(解算图像精确内外参)、密集匹配(生成高密度点云)、网格构建(生成三维几何网格模型)、纹理映射(生成纹理逼真的三维模型)以及模型优化与输出[23][24][25][26][27] MVSNET技术流程 - 流程包括:输入准备(接收多幅图像及相机参数)、特征提取(用CNN提取像素级特征)、代价体构建(计算特征相似度构建三维代价体)、代价体正则化(用3D卷积网络滤波)、深度图回归(计算深度概率分布生成深度图)以及后处理(优化深度图)[30][31][32][33] NeRF技术原理与演进 - NeRF用一个连续的体积函数表示3D场景,输入3D坐标和视角方向,通过训练神经网络预测点的颜色和密度,并使用体积渲染公式合成新视角图像[34][36] - 原始NeRF训练慢、渲染慢、内存占用大,后续改进包括:Instant-NGP+使用哈希编码将训练速度提升100倍;Mip-NeRF+解决抗锯齿问题;Block-NeRF+支持城市级大场景;D-NeRF+支持动态场景[37] - 与MVSNET区别:MVSNET是显式几何流水线,先生成点云/网格再渲染;NeRF是隐式场方法,直接学习连续函数并可通过体渲染生成任意视角图像[39][40][41] - 在跨场景泛化方面的改进工作包括:代价体编码(如MVSNeRF)、点云特征外挂(如Point-NeRF)、使用注意力机制聚合多视图(如IBRNet)、引入2D大模型先验(如DreamFusion)以及元学习/预训练流程(如Meta-NeRF)[44][45][46][48][50] 3D高斯溅射(3DGS)技术原理 - 核心思想是将三维场景显式地建模为数百万个可学习的3D高斯基元,每个基元包含位置、协方差(决定椭球形状)、不透明度和视角相关颜色(用球谐系数表示)等参数[52][53] - 基本流程:用COLMAP做SfM初始化稀疏点云和高斯球;进行视锥剔除;通过可微分投影将3D高斯变换到2D;采用分块光栅化(Tile-based splatting)按深度排序并行渲染;计算损失并反向传播优化所有参数;通过自适应密度控制(克隆、分裂、剪枝)来增删基元[57][58][59][60][61][62][63][64] - 自适应增删基元的依据:增基元依据梯度反馈、几何特征和多视角一致性;删基元依据全局重要性评分、多视角一致性和几何特征;通过克隆、分裂、直接删除或软剪枝等方式实现,并周期性执行以保持优化稳定性[71][72][74][75][76][77][79][80][82][83][85] 3DGS在自动驾驶领域的应用 - 高精度场景重建:AutoSplat框架通过物理约束优化实现高度逼真的自动驾驶场景还原;GaussianOcc通过全自监督3D占用估计技术,在无LiDAR标注下使占用预测精度比传统方法提升15%-20%;LumiGauss解决极端光照场景重建失效问题;EGSRAL可实现大规模驾驶场景的自动化3D重建与语义标注[88][89][90][91] - 感知能力增强:DepthSplat实现3DGS与深度估计的直接联动,可修正LiDAR因遮挡导致的深度误差,使对弱势交通参与者的深度估计误差降低至5厘米以内;3DGS与SLAM融合可实时区分静态背景与动态物体,使定位误差从传统SLAM的0.5米降低至0.1米以内[92][93] - 动态场景建模:DrivingGaussian专为环视相机设计,采用分区域高斯建模策略,实现360°全方位动态场景重建;GaussianCity通过高斯点分层存储与动态加载技术,将城市场景重建速度提升60倍,可实现平方公里级区域的实时建模[94][95] - 仿真闭环:3DGS通过高保真场景生成与实时交互,为自动驾驶算法迭代构建更真实的数字孪生仿真环境[97] - 动态场景建模技术:S³Gaussian采用自监督学习,通过时空场网络和多头高斯解码器实现无需标注的动态场景分解;DrivingGaussian采用增量静态高斯和复合动态高斯图的分层建模策略,并通过引入LiDAR先验使静态背景重建误差降低40%[98][100][102]