文章核心观点 2025年是全球AI行业格局重新站稳、路径分化的关键年份,竞争焦点正从模型能力本身转向系统能力、生态位置与长期演化能力[5] 行业整体从追逐参数规模和热点概念,转向更强调系统效率、真实场景与可持续的技术积累[6] 大模型正变得“更可用”,而不仅仅是“更聪明”[14] Agent已成为公认的下一阶段核心主赛道,正从概念走向真实业务,重塑软件构建范式[35][37] AI Native应用正在重新定义软件的构建方式,但ToB领域呈现“热度高、落地慢”的特征[63] AI技术在各行业的普及度大幅提升,尤其在金融、医疗、教育等领域实现了规模化落地并带来可量化的成效[74][75] 全球AI竞争格局 - OpenAI:维持通用大模型能力上限,在推理、代码、多模态等维度作为行业对标对象,拥有全球最高的C端用户量,短期内保持入口级地位[4] 但GPT-5的发布未带来预期中的代际震撼,后续发布相对平淡[4] - Google:在2025年打了一场漂亮的翻身仗,技术能力全面回归,Gemini 3、Nano Banana等赢得众多用户,并通过搜索、办公和云产品形成有效分发和良性联动[4] - Anthropic:成为最稳健的玩家之一,Claude系列模型在开发者中口碑持续上升,通过与AWS等云厂商深度合作,其API业务的规模和增速实现了对OpenAI的超越[5] - 国内厂商:DeepSeek是2025年最具标志性的明星公司,其R1的发布及开源姿态极大地活跃了AI中下游创新生态[5] MiniMax、智谱等公司开始冲击港股上市,但暴露出行业普遍面临的投产比偏低、亏损压力大、商业化仍在探索的现实问题[5] 行业成功与失败的关键 - 能跑出来的公司类型:第一类是高频刚需场景(如AI社交、短剧、音乐)的公司,其关键不是生成能力,而是持续使用价值[7] 第二类是成本结构被AI彻底改写的公司,AI将内容或服务的边际成本压缩1–2个数量级,直接改变行业定价逻辑,实现商业模型重构[7] - 明显落后的公司类型:包括只做通用型AI助手但缺乏垂直数据和结果闭环的公司、只做模型不做产品的公司、靠融资续命缺乏付费能力的AI创业公司,以及反应迟缓流程未被Agent化的传统软件公司[9] - 决策层认知是关键:在同一个行业中,自一号位开始认真拥抱AI的,明显已经在业务流中找到许多落地机会,决策人的认识是未来拉开差距的关键点[10] 中美AI竞赛态势 - 国内AI取得实质性进展:在基础模型能力、多模态理解、推理效率与工程化落地层面均呈现明显跃升,以DeepSeek-R2、Qwen3系列等为代表,在模型规模、效率与成本之间探索出更具可行性的平衡方案,形成以成本控制、系统优化和应用适配为核心的差异化优势[11] - 差距分层看待:在部分通用能力与工程执行层面,差距正在迅速缩小,某些特定场景已具备直接竞争力[11] 但在长期基础研究积累、原创智能范式探索及面向下一代智能的系统性布局上,整体仍存在差距[11] 西方在AI算法创新方面优势可能只剩“几个月”,而不是“几年”[11] - 中国AI开始全球影响:中国AI模型正被真实引入全球生产环境,而不仅停留于试验阶段[12] OpenRouter与a16z报告显示,全球开源模型使用量的显著增长与DeepSeek V3、Kimi K2等国内开放模型的发布高度同步[12] 大模型技术演进趋势 - 从“更聪明”到“更可用”:大模型在复杂指令理解、多步推理稳定性及跨模态任务一致性上有肉眼可见的进步,尤其是在不依赖极端Prompt情况下完成整个任务链[14] 技术路线从训练时把模型做大,转向运行时让模型用得更好,强化学习、测试时计算、显式推理结构被大规模引入[14] - 性价比系统性重写:训练一个激活参数规模约10B的模型,其整体能力已经可以超过2024年激活参数在100B以上的模型,一年内实现接近10倍的性价比提升[15] - Scaling路径分化:更多数据、参数规模和计算依然是提升基础模型能力最有效的通用路径,但单位成本所换取的收益正在快速下降,经济回报曲线变得平缓[16] 当前瓶颈更多来自模型无法高效利用已有信息,下一步真正拉开差距的是能找到值得Scaling的点,如基于动态应用场景的记忆[16] - 工程能力成为重点:大模型厂商的工作进入了拼工程化的时代,更依赖集团军作战和组织能力,而非少数超级明星[18] 有传言称Gemini 3的成功有很大一部分归功于修复了若干重大bug[18] - 强化学习(RL)作用关键但有限制:强化学习在这一轮爆发中发挥了决定性作用,只要具备足够数据和高质量反馈,它几乎可以在任何任务上达到人类前0.1%甚至0.01%的水平[18] 但目前大多数强化学习训练仍停留在几千步量级,距离跑通稳定的RL scaling law还有相当距离[18] - 合成数据成为重要来源:大规模合成数据替代人工数据正在发生,但并非完全取代[19] 高价值的合成数据是被严格约束、可验证、能放大信息增益的数据[19] 模型架构发展 - Transformer依然是核心基础:在可预见的未来,Transformer仍将是大模型的核心基础,多数所谓的新架构本质上是围绕其关键组件所做的工程化改良[20] - MoE迅速普及:通过MoE对FFN进行稀疏化,是提升规模效率的关键路径,DeepSeek在大规模实践中证明了MoE可以稳定地扩展到超大模型规模[21] MoE的普及是被成本与规模双重压力逼出来的工程选择,通过“只激活少量专家”的方式,在参数规模与实际算力开销之间找到平衡点[22] - 注意力机制高度活跃:业界持续探索更高效的注意力结构,例如Gemini系列采用滑动窗口注意力与稠密注意力的混合架构;Qwen3-Next、Kimi Linear引入DeltaNet等线性注意力机制[22] 这些探索主要源于厂商对Agent化与深度思考场景的需求[22] Agent技术发展与影响 - 从“会对话”到“能干活”:AI的角色从“回答问题”转向“完成事情”,使模型具备了感知外部环境、理解复杂需求并主动调用系统能力的可能性,这是一次软件构建范式的跃迁[36][37] - 协议与标准推动规模化:以MCP为代表的模型上下文与工具调用协议在今年迎来应用爆发,基于统一协议降低了应用层构建成本[38] Google推出的Agent-to-Agent通信协议,标志着多智能体系统开始走向标准化协同[39] - 技术呈现“上下分化”:应用层创新异常活跃,在编程、运维、客服等高频场景中已开始创造可量化的业务价值[40] 平台层与基础设施层的竞争正在加剧,对资源调度、安全隔离、成本控制与可观测性的要求迅速上升[40] - 沙箱Infra快速发展:以E2B为代表的沙箱服务随着Manus的爆火迎来真正爆发[41] 谷歌开源了基于k8s的Agent-sandbox项目,阿里云也宣布开源OpenKruise Agents,云原生技术与Agent沙箱技术的结合将极大推动Agent应用的普及[41] - 商业模式向“结果导向”演进:单纯售卖“Agent能力”本身正变得越来越困难[42] 企业不再仅仅为一个Agent平台付费,而是为“一个能完成具体工作的数字员工”买单[43] - 多Agent协作的现实挑战:多个Agent之间无效沟通带来的Token消耗,正在成为企业真实的成本压力,促使业界从“人格化Agent”转向“系统化Agent”[43] - 产业分工清晰化:大模型厂商在Agent的规划、推理与工具调用层具备优势;云厂商在基础设施、弹性调度、安全隔离与企业集成方面占据关键位置;创业公司则在垂直场景的定制化解决方案与成本优化上寻找空间[44] 具身智能发展现状与挑战 - 行业繁荣但非共识多:截至2025年11月,中国已有超200家人形机器人本体厂商[48] 但行业对于本体形态、数据类型、模型架构仍存在大量争议,需要更多探索和迭代才能逐步收敛[49] 并未出现ChatGPT时刻或具身数据的ImageNet时刻[50] - 技术取得渐进式进步:机器人在稳定性、可靠性上有显著提升,正从技术演示阶段朝着产品化方向推进[48] 机器人已经具备100%完成一些简单任务的能力,其他复杂任务的成功率也在稳步提升[49] 视觉语言导航(VLN)方向进展显著,涌现出大量基于视觉语言输入的导航模型,可以解决零样本泛化问题,不再需要预先建图,大幅降低部署成本[50] - 面临多重制约难题:具身大模型普遍存在“感知不准确”与“决策不靠谱”的问题[51] 机器人硬件成本居高不下,核心部件价格高[51] 软硬件技术路径结合未完全收敛,模型架构和数据的飞轮迭代设计未做好整合[51] 场景化产品定义不清晰,产品完整生命周期的市场和运维体系未建立[52] - 世界模型成为新范式焦点:世界模型被认为是实现高级推理和规划的关键,已显著提升机器人在动态环境中的任务执行连贯性和长期行为合理性[54] 世界模型是解决数据问题的一个共识,是VLN突破长程规划和动态适应瓶颈的充分非必要条件[54] 技术架构开始把VLA与RL结合起来使用[55] - 未来展望与商业模式:到2026年,具身智能可能在多任务协同、长时自主运行、人机共融交互等方面实现显著突破[57] 首款大面积铺开的具身智能落地产品很可能在中国出现[60] 除整机销售外,租赁、按使用次数或完成任务量收费的RAAS模式,以及“整机销售 + 每年服务费”的组合模式正在逐步落地[60] AI Native开发范式 - 定义与特征:AI Native指从设计之初就将AI作为其不可分割的基石和核心驱动力的应用程序、产品或系统[62] 其内部嵌有模型,交互方式更贴近“人与人沟通”的多通道、多模态体验[62] - ToB领域“热度高、落地慢”:企业级AI应用数量同比增长超过60%,但超过一半仍集中在编程辅助、内容生成、数据分析与内部效率工具等轻量级场景,真正成为“系统级核心能力”的AI应用仍属少数[63] - 面临工程挑战:对AI能力高度依赖的行业客户,其系统模型、算力和数据高度耦合,模型版本更新可能直接影响业务逻辑,推理成本变化会反向制约产品形态,这些问题超出了传统软件工程的设计范式[65] 低代码平台上的AI应用开发者则面临企业治理逻辑与AI认知模式之间的结构性冲突[65] - 渐进式“AI化”成为务实路径:越来越多团队选择不推翻原有系统,而是在其之上通过Agent、插件或工作流逐步“AI化”,使AI更像一个协作层、决策层或增强层[66][67] - 对核心业务系统改造偏慢:AI对CRM、HR、财务与供应链等核心业务系统的改造仍然偏慢,因其核心逻辑高度稳定,用户迁移成本极高[68] - 资本投入趋于谨慎:与2023年相比,2024年国内资本对ToB AI的投入明显趋于谨慎,更倾向于支持能快速体现效率收益的AI产品,而非周期更长的系统级重构[68][69] - 重塑研发流程:在中大型技术团队中,超过70%的工程师已将AI作为日常开发工具,显著提高了开发效率,同时也改变了工程能力结构[69] 随着AI应用规模扩大,上下文压缩、信息筛选和记忆机制将成为AI Native架构的核心竞争力之一[70] AI行业应用落地 - 金融行业:AI应用已经从工具变为“生产力伙伴”,参与到实际业务流程中,协助和独立承担任务拆解、流程执行[75] 如果以“是否已经尝试或者部署AI”为标准,在金融行业的比例已经非常接近、甚至在部分细分领域已经超过一半[75] 一些机构日均模型调用规模已达亿级token,成为事实上的基础设施[75] - 医疗行业:AI在医疗领域的角色早已突破单一环节的辅助,正在形成多场景、全链条的格局[77] 传神语联推出的“传神素问”中医大模型,年度使用用户已突破千万,是中国第一个能够像专家一样主动问诊的中医大模型[77] 大模型在医疗领域的应用更广泛渗透到了药物研发环节,行业内会专门构建针对性的大模型[78] - 教育行业:豆神教育正在独家AI教育大模型的基础上,打通AI教育不同场景间的壁垒,其企业级Agent覆盖了从内容生产、课堂授课到课后服务的全流程[79] - 未来突破方向:平安将继续在医疗多模态、居家养老具身智能上持续探索,例如利用无线波感知技术监控老人行为轨迹,识别跌倒风险[80] AI+中医将以“场景化智能体”为核心形态,AI的角色将从零散的单点工具进化为适配中医诊疗逻辑的“场景化智能体”[80] AI+中医情志康养是下一步突破的重点,预计在明年1月发布相关推进计划[80]
大模型狂叠 buff、Agent乱战,2025大洗牌预警:96%中国机器人公司恐活不过明年,哪个行业真正被AI改造了?
AI前线·2026-01-01 13:33