Sebastian Raschka 2026预测:Transformer统治依旧,但扩散模型正悄然崛起
机器之心·2026-01-14 15:18

文章核心观点 - 行业认为Transformer架构在未来至少一至几年内仍将是AI生态系统的基石,但竞争焦点正从单纯追求模型规模转向效率优化和混合架构[4][5] - 扩散语言模型因其并行生成特性和在数据稀缺条件下的学习优势,成为2026年值得关注的新兴变量,但其在工具调用方面的缺陷限制了其作为智能体的应用[11][12][19] 效率战争:混合架构与线性注意力的崛起 - 行业近期重点转向混合架构与效率提升,例如DeepSeek V3采用混合专家模型和多头潜在注意力,在拥有6710亿参数的情况下,每次推理仅激活370亿参数,显著降低了推理成本[7] - 多家公司推出效率导向的模型变体,如Qwen3-Next、Kimi Linear、Nvidia Nemotron 3以及采用稀疏注意力的DeepSeek V3.2[7] - 标准Transformer注意力机制具有O(N²)的计算复杂度,导致长上下文处理成本剧增,因此行业正积极研发线性注意力或稀疏注意力等方案以降低计算开销[9] - 2026年的竞争核心在于如何在更长的上下文和更低的延迟下,提供同等的模型性能[10] - 部分模型采用混合策略,例如将高效的线性层与全注意力层以一定比例混合,以平衡长距离依赖捕捉能力和推理速度[14] 扩散语言模型:速度与代价的博弈 - 扩散语言模型采用并行生成方式,能够以相对快速且低廉的成本生成Token,其生成过程被类比为从噪声中并行“冲洗”出整段文字[12] - 行业预测Google可能在2026年推出Gemini Diffusion,作为其更便宜的Flash模型的替代品,并强调其生成速度“明显快于我们目前最快的模型”[12] - 扩散模型并行生成的特性导致其无法在响应链中原生地整合工具调用,这使其在作为智能体应用时面临巨大挑战[13][15] - 研究表明,若为了匹配自回归模型的性能而增加扩散模型的去噪步数,其最终计算成本可能与自回归模型相差无几[17] 数据枯竭时代的「超级学习者」 - 在互联网高质量文本数据接近枯竭的背景下,扩散语言模型可能成为更好的数据学习者[18][24] - 研究论文《Diffusion Language Models are Super Data Learners》指出,当进行多轮次训练时,文本扩散模型的表现可能优于标准的自回归大语言模型[19][25] - 在数据量受限的情况下,扩散语言模型通过增加训练轮数,其表现持续超越自回归模型,例如一个10亿参数的扩散语言模型,仅通过反复训练10亿个Token,就在HellaSwag和MMLU基准测试上分别达到了超过56%和超过33%的准确率[26][27] - 对于扩散语言模型,验证集损失的上升并不一定意味着下游任务能力的下降,即使看似“过拟合”,其在代码生成、推理等任务上的表现可能仍在提升[28] - 扩散模型具备任意顺序建模、超高密度计算以及内置的蒙特卡洛增强等特性,使其能从有限数据中进行更高效的学习[31]

Sebastian Raschka 2026预测:Transformer统治依旧,但扩散模型正悄然崛起 - Reportify