中游智驾厂商,正在快速抢占端到端人才......
自动驾驶之心·2026-01-16 10:58

行业趋势与市场现状 - 智能驾驶领域的技术焦虑正在产业链中游厂商间快速传播 [1] - 行业前沿技术发展放缓,业内量产方案趋同,整体呈现技术下沉趋势 [2] - 端到端等前沿技术的大规模量产起点预计在2026年 [2] - 二十万以上的乘用车年销量约700万辆,但头部新势力销量占比不足三分之一,搭载端到端技术的量产车型占比更低 [2] - 随着L3级自动驾驶法规推进,中游厂商面临紧迫的技术升级压力 [2] 技术发展路径与需求 - 端到端技术的成熟被视为开启更大规模量产的关键 [2] - 近期众多公司算法负责人迫切希望了解端到端所需的技术能力 [2] - 在端到端时代,感知任务合并与规控算法学习化已成为绝对主流 [7] - 如何高效合并感知任务、设计学习化的规控模块成为各大公司的核心必备技能 [7] 端到端技术架构与方案 - 主流技术架构分为两段式与一段式端到端算法 [8][9] - 两段式框架涉及感知与规划控制(PNC)间的信息传递建模,存在信息损失 [8] - 一段式框架可实现信息无损传递,性能通常优于两段式方案,代表方法包括基于VLA和基于Diffusion的方法 [9] - 量产落地需包含后处理的兜底逻辑,例如时空联合规划等轨迹平滑优化算法,以保证输出轨迹的稳定可靠 [13] 关键赋能技术与应用 - 导航信息在自动驾驶中起引导、选路、选道的关键作用,其地图格式、编码与嵌入方式是技术重点 [10] - 仅靠模仿学习存在局限,需结合强化学习(RL)使机器学习因果关系,实现更好的泛化能力 [11] - 轨迹输出优化涉及模仿学习与强化学习的结合使用,具体算法包括基于扩散模型和基于自回归的算法 [12] 量产实践与经验 - 真正的量产落地需从数据、模型、场景、规则等多视角综合施策,以快速提升系统能力边界 [14] - 课程内容聚焦量产实践,涵盖从架构概述、具体算法、导航应用、RL训练到轨迹优化及兜底方案的完整链条 [7][8][9][10][11][12][13][14]

中游智驾厂商,正在快速抢占端到端人才...... - Reportify