文章核心观点 - 知名AI专家Gary Marcus认为,当前以Transformer架构和大语言模型为核心的AI发展路径存在根本性缺陷,无法实现通用人工智能(AGI)[2][14] - 整个行业在神经网络和大语言模型上投入了1到2万亿美元,但方向本身“毫无道理”,且已进入收益递减阶段[2][14] - 大语言模型本质上是“超级版自动补全工具”,基于统计模式工作,不具备真正的理解、抽象思维和逻辑推理能力,因此存在幻觉、无法应对新情况等根本缺陷[19][29][31] - AI领域缺乏技术壁垒,模型正成为标准化商品,导致价格战和商业模式危机,头部企业如OpenAI面临严重的财务和生存挑战[3][36][38][55] - 要实现真正的突破,行业需要学术思维多样性,并转向构建“世界模型”和结合符号式AI等基础研究,而非仅仅依赖数据与算力的规模化扩张[49][60][66] 对当前AI技术路径的批判 - 技术本质缺陷:大语言模型的工作原理是预测序列中的下一个内容,本质是统计模式识别和“信息碎片”的黏合,而非真正的思考或理解[19][25][29] - 幻觉问题严重:模型会凭空编造事实并自信地呈现,例如编造人物养宠物鸡或将洛杉矶出生的人误判为英国人,根源在于其缺乏对世界的真实表征[21][23][24][62] - 无法处理新情况:模型本质是“功能强大的记忆机器”,其能力受限于训练数据,无法有效应对训练数据之外的新事物、新情况,如特斯拉自动驾驶系统因未训练识别飞机而撞机[31][32][45] - 缺乏系统二思考:神经网络仅相当于人类认知中的“系统一”(快速、直觉),完全不具备“系统二”(慢速、逻辑、推理)的能力,这是其无法实现AGI的核心原因[13][14] AI行业的商业与竞争格局 - 巨额投资与低效回报:行业已在神经网络上投入1到2万亿美元,但面临“一圈又一圈的循环融资”和“投资回报率不尽如人意”的局面[2][53] - 技术壁垒消失:所有AI企业的研发思路基本一致,导致没有真正的技术护城河,谷歌等资金雄厚的巨头能够迅速赶上甚至反超[3][36][37] - 模型商品化与价格战:大语言模型正成为标准化商品,各家模型差距微乎其微,引发激烈价格战,按token计费的价格已暴跌99%[3][38] - OpenAI的生存危机:公司每月亏损约30亿美元,年亏损超300亿美元,尽管近期融资400亿美元,但资金仅够支撑约一年运营,面临被收购(如微软)或倒闭的风险[3][55][58] - 风险投资的扭曲激励:部分风险投资家热衷于管理费高昂的“规模化扩张”项目,而非推动真正技术进步,加剧了行业泡沫和资金错配[50] AI技术的演进与局限 - 推理模型的局限:推理模型(如o1)在大语言模型基础上进行多次迭代推敲,在数学、编程等封闭领域表现较好,但成本更高且依然无法应对开放世界的新情况,不具备真正的逻辑分析能力[40][44][45] - 行业暗中转向:各公司已悄悄放弃纯大语言模型思路,开始融入代码解释器等经典的符号式AI工具以提升模型表现,这印证了神经符号结合路线的正确性[34][35] - 规模化扩张的谬误:“规模化扩张”理念(即投入更多数据、算力模型就会更智能)被比喻为“万亿磅婴儿谬误”,是一种天真的线性外推,无法解决AI的核心认知缺陷[16][17][66] - 人才流动的信号:大量人才从OpenAI等头部公司离职创业,表明企业内部人员也清楚并未取得宣称的突破性进展,AGI并非近在咫尺[3][36] 未来发展的方向与建议 - 必须构建世界模型:脱离“世界模型”(对现实世界结构化的内部表征)的AI系统根本行不通,必须研发能够自主归纳因果规律和世界规则的AI[60][62][65] - 需要学术多样性:行业应将资源从单一的规模化扩张路径,分散到探索更高效、经济、可靠的新技术方向上,如同投资需要分散配置[49] - 重视基础研究:当前市场是在为一项远未成熟的技术进行投机性规模化投入,真正需要的是扎实的基础研究,而非指望单纯扩大规模就能实现突破[66][67] - 对AGI的理性预期:现有技术无法实现AGI,研究显示AI目前仅能完成约2.5%的人类日常工作,其商业价值被严重高估[54]
烧2万亿美元却难用?Gary Marcus狂喷AI赛道不靠谱:推理模型只是“模仿秀”,OpenAI一年后倒闭?
AI前线·2026-01-27 11:50