通用 Agent 架构

搜索文档
技术狂飙下的 AI Assistant,离真正的 Jarvis 还有几层窗户纸?
机器之心· 2025-07-30 09:30
01 通用 Agent 架构受限,任务智能还停留在「样板房」? - 当前 AI Assistant 的核心挑战集中在智能规划与调用、系统延迟与协同、交互记忆与拟人性以及商业模式与落地路径四个维度 [2] - 在任务执行智能方面,一条核心路线是构建长程、循环、可泛化的通用任务框架,实现从目标理解到任务完成的全过程 [2] - 通用框架的代表 Manus 采用「多步任务规划 + 工具链组合」架构,将 LLM 用作「控制中心」,但在实际测试中对复杂网页结构的抓取覆盖不足 [4] - MetaGPT 强调通用框架需叠加「代码执行、记忆管理与系统调用」等组件,但存在延迟高、调用链复杂、成本不可控等问题 [4] - 「逐场景做透」的技术路线更强调低门槛部署与稳定性,适用于「弱通用、强完成」的应用需求,但在非结构化任务或领域迁移时表现明显下降 [4] - Browser-Use 类路径支持 Agent 模拟浏览器登录、填写表单、抓取信息、提交交易等功能,但稳定性、安全性与权限系统仍未成熟 [6] - 无代码出工具(No‑Code Agent Builder)正成为下一代 AI Assistant 的推荐解决方案,如 AutoGen Studio、Base44 和 StackAI 等 [6][7] 02 一句话唤醒万物,AI Assistant 要补齐的系统短板有哪些? - AI Assistant 最终要以语音为主要形态和用户进行交互,系统优化层面面临语音交互低延迟、全双工语音、能力与硬件/系统行动绑定等挑战 [8]