Bird's Eye View (BEV) Perception

搜索文档
性能暴涨4%!CBDES MoE:MoE焕发BEV第二春,性能直接SOTA(清华&帝国理工)
自动驾驶之心· 2025-08-19 07:32
核心观点 - 提出CBDES MoE框架 在功能模块层面实现分层解耦的专家混合结构 集成四种异构视觉backbone 通过自注意力路由器实现动态专家选择 提升自动驾驶BEV感知性能[2][5][12] - 在nuScenes 3D目标检测任务中 mAP提升1.6个百分点至65.6% NDS提升4.1个百分点至69.8% 超越所有单专家基线模型[3][37] - 采用稀疏激活推理机制 仅激活top-1专家 显著降低计算成本 支持实时应用[25][26] 技术架构 - 集成四种结构异构专家网络:Swin Transformer(擅长全局空间结构) ResNet(强于局部结构编码) ConvNeXt(平衡局部性与可扩展性) PVT(多尺度目标建模)[17][18] - 设计自注意力路由器SAR 包含分层特征提取 自注意力编码和MLP专家评分三阶段 生成图像级路由概率[19][20][21] - 采用软加权特征融合机制 根据路由概率动态加权专家输出 保持训练稳定性[24] - 引入负载均衡正则化 防止专家坍塌 使mAP从63.4%提升至65.6% NDS从65.8%提升至69.8%[42][43][46] 性能表现 - 在nuScenes数据集上全面超越单专家基线:BEVFusion-Swin Transformer(mAP 64.0% NDS 65.6%) BEVFusion-ResNet(mAP 63.3% NDS 65.2%) BEVFusion-ConvNeXt(mAP 61.6% NDS 65.2%) BEVFusion-PVT(mAP 62.4% NDS 65.7%)[37] - 在恶劣条件(雨雾 夜间)下保持检测鲁棒性 显著减少误检和漏检[40] - 训练过程收敛更快 损失更低 显示优化稳定性和学习效率优势[39] 应用前景 - 可无缝集成至BEVFusion等标准框架 保持相机到BEV投影逻辑和下游任务头兼容性[29][30] - 当前支持图像级路由 未来可扩展至图像块级或区域感知路由 实现更细粒度适应[48] - 潜在扩展方向包括多任务学习(分割 跟踪) 跨模态路由(激光雷达信号) 以及自动化架构搜索[48]