Fourier Decomposition

搜索文档
ICML 2025 Spotlight | 用傅里叶分解探讨图像对抗扰动,代码已开源
机器之心· 2025-05-18 12:25
研究背景 - 对抗样本通过微小扰动生成,难以被人眼察觉但显著降低深度学习模型性能,对计算机视觉领域模型安全性和鲁棒性构成重大挑战[5] - 现有对抗净化技术分为基于训练的方法和基于扩散模型的方法,前者需大量训练数据和时间,后者不依赖训练数据且泛化能力更强[5] - 对抗净化在自动驾驶、金融分析和医疗影像等安全关键领域尤为重要,可降低对抗攻击威胁并提升系统整体安全性[5] 动机和理论分析 - 现有策略在像素空间无法解耦干净像素与对抗扰动,导致破坏扰动时损害原始图像语义信息[7] - 对抗扰动更倾向于破坏高频幅度谱和相位谱,低频信息对扰动更鲁棒[7] - 相位谱被噪声破坏速度更快,逆向过程中保留相位谱非常关键[12] 方法 - 利用傅里叶分解技术将图像分解为幅度谱和相位谱,通过滤波器保留低频幅度谱信息[14][15] - 将估计图像低频相位谱投影到输入图像低频相位谱范围内,避免直接保留扰动[16] - 通过逆离散傅里叶变换将更新后的幅度谱和相位谱结合,获得时间域表示[16] 实验效果 CIFAR10 - 在WideResNet-28-10模型上,标准准确率94.14±1.17,鲁棒准确率93.75±0.80,均优于SOTA方法[18] - 在WideResNet-70-16模型上,标准准确率94.92±0.39,鲁棒准确率92.77±0.58,表现最佳[18] ImageNet - 使用ResNet-50分类器,标准准确率77.15±1.57,鲁棒准确率65.04+2.54,显著优于其他方法[19] 可视化 - 净化后图像与原始干净图像在视觉上最为相似,联合分布也最接近原始图像[20] 未来方向 - 探索更有效的图像分解手段以更好解耦对抗扰动和语义信息[21] - 提供更深入的理论解释以进一步优化对抗净化效果[21]