Multi-Agent Reinforcement Learning

搜索文档
自动驾驶论文速递 | GS-Occ3D、BEV-LLM、协同感知、强化学习等~
自动驾驶之心· 2025-07-30 11:01
自动驾驶技术研究进展 - 清华大学与奔驰合作提出GS-Occ3D算法 首次实现纯视觉的大规模3D占用重建 在Waymo数据集上以0.56倒角距离刷新几何精度SOTA 训练效率仅需0.8小时 并在Occ3D-nuScenes数据集实现33.4 IoU 超越激光雷达基线的31.4 [3][5] - GS-Occ3D创新性地开发了纯视觉占用标签生成管道 摆脱对LiDAR标注依赖 支持利用大规模众包数据进行自监督标注 在长轨迹和复杂场景中保持高几何保真度 [5] - 该算法在Waymo数据集验证中 IoU达44.7 F1分数61.8 在nuScenes零样本测试中IoU 33.4 超越基线31.4 显示强大泛化能力 [6] 多模态场景理解技术 - 慕尼黑应用技术大学提出BEV-LLM框架 通过融合LiDAR点云与多视角图像生成3D场景描述 在nuCaption数据集BLEU-4分数达20.28% 超越SOTA模型5% [9][15] - BEV-LLM采用1B参数轻量级模型 创新使用正弦-余弦位置嵌入技术 将特征空间划分为六个视图 在BLEU系列指标上全面超越7B参数级大模型 [15][16] - 研究团队同步发布nuView(205k样本)和GroundView(7.4k样本)两个新数据集 为环境感知和对象定位研究提供新基准 [9][15] 协同感知技术突破 - 清华AIR研究院联合团队提出CoopTrack框架 在V2X-Seq数据集实现39.0% mAP与32.8% AMOTA 传输成本降至V2X-ViT的2.2% [21][26] - 该框架采用可学习实例关联模块和"融合后解码"流程 实现协作与跟踪的无缝集成 在mAP指标上较Early Fusion提升12个百分点 [26][29] 强化学习应用创新 - 德国研究团队提出自适应行为课程框架 通过多智能体强化学习教师动态生成交通行为 使智能体在未信号化交叉口平均速度提升98%至1.63 m/s [33][39] - 该框架采用图网络架构和新型奖励函数 能生成不同难度水平的交通行为 在最高难度场景(λ=-1)下成功率提升至40% [33][39] 视觉行驶区域预测 - ContourDiff模型突破单目视觉多模态驾驶通道预测技术 在CARLA实现0.7767 IoU与0.02障碍物重叠率 支持6种驾驶行为生成 [45][48] - 该技术首次将行驶区域预测定义为图像感知任务 采用自监督样本生成方法 摆脱对密集标注数据的依赖 [48][49]