Workflow
SD3.5 Medium
icon
搜索文档
首次!流匹配模型引入GRPO,GenEval几近满分,组合生图能力远超GPT-4o
机器之心· 2025-05-13 15:08
核心观点 - 流匹配模型在复杂场景和文本渲染任务中存在困难,在线强化学习在图像生成领域应用仍处于初步阶段 [1] - Flow-GRPO 是首个将在线强化学习引入流匹配模型的工作,显著提升模型性能 [2] - Flow-GRPO 通过 ODE-SDE 等价转换和去噪步数减负两项关键策略提升训练效率 [6][8] - Flow-GRPO 在 GenEval 基准测试中准确率从 63% 提升到 95%,超越 GPT-4o [14] - Flow-GRPO 为流匹配模型在可控性、组合性和推理能力方面开辟了新范式 [23] 核心思路与框架概览 - ODE-SDE 等价转换:将确定性 ODE 转换为随机 SDE,为 RL 提供探索空间 [8][9] - 去噪步数减负:训练时减少生成步数(40 步减到 10 步),推理时保持完整步数,提升训练效率 [8][12] 核心实验效果 - 复杂组合生成能力大幅提升:GenEval 基准上 SD3.5-M 准确率从 63% 提升至 95% [14] - 文字渲染精准无误:视觉文本渲染准确率从 59% 提升至 92% [19] - 人类偏好对齐任务取得显著进步,图像质量和多样性未受影响 [21] 总结与展望 - Flow-GRPO 揭示了利用在线强化学习持续提升流匹配模型性能的可行路径 [23] - 为图像、视频、3D 等多模态生成任务提供了新范式 [23]