Workflow
AI Agent:算力需求空间?
2025-05-06 10:28

纪要涉及的行业 AI算力行业 纪要提到的核心观点和论据 1. 算力需求增长逻辑 - AI应用渗透推动推理需求:AI应用逐渐渗透到生活和工作各环节,改变使用习惯,使算力推理需求快速增长,微软、谷歌等大厂推理需求占比可能达60%-70%,主要源于老应用改造而非开发全新APP [1][2] - 细分领域仍有增长潜力:训练环节市场预期悲观,但实际可能更好,预训练边际效应减缓,后训练增速不明显,但细分领域如AI Agent有增长潜力 [1][4] 2. 市场预期情况 - 算力产业链与AI应用分化:从2024年5月开始,除ASIC外,算力产业链边际走弱,英伟达股价未创新高,市场对整体算力需求预期悲观;而AI应用领域表现强劲,如Palantir股价创新高,市场对AI应用预期较高 [1][5] 3. 解决算力需求问题方向 - 训练与推理两手抓:解决算力需求青黄不接问题需关注训练和推理两方面,训练算力需求短期难提升,推理依赖Agent发展,Agent在特定场景已有所起色 [1][7] 4. 2025年算力需求来源 - 老应用改造、新衍生应用与Post Training:2025年算力需求主要来自老应用改造(如推荐引擎在海外大厂的应用)、新衍生应用(如Agent)以及Post Training阶段,Agent面向ToB/ToD场景,特定领域需求显现 [1][12] 5. Chatbot与Agent对比 - 应用场景与爆款潜力不同:Chatbot面向ToC市场,易形成爆款;Agent面向ToB和ToD场景,不易成为爆款,其算力需求难被资本市场迅速感知 [13] - 任务复杂度与交互方式差异大:Chatbot单次交互量约1000个TOKEN,一对一、一问一答式交互;Agent完成单个任务所需TOKEN量达几万甚至十万个,多任务、多Agent协作执行,消耗数据量和TOKEN数量远高于Chatbot [25] - 存储和算力需求有别:Chatbot对存储和内存要求低;Agent执行任务各步骤需连贯操作,对存储和内存要求高,对计算能力和存储都有较高需求 [27][28] 6. 算力需求计算与评估 - 训练与推理算力需求公式:训练算力需求预期约为6ND,推理算力需求预期约为2ND,N代表模型参数量,D代表数据集 [16] - 评估服务器或GPU卡数量:通过总需求除以单个GPU卡的算力估算所需设备数量,同时考虑设备实际利用率 [34] 7. 模型选择与优化 - 优先选择小模型:选择模型参数时优先考虑小模型,大厂做推理应用倾向先上小模型,降低成本,提高可接受性 [31] - 优化模型访问和推理方法:使用低精度计算、模型蒸馏,结合硬件优化如KV缓存优化,可降低内存消耗,提高整体效率 [35] 其他重要但是可能被忽略的内容 1. 后训练情况:后训练自2024年9月推出,对市场影响不明显,从事厂商数量有限,数据难跟踪,在模型参数量上维持在几万亿量级,虽算力需求预期不明显,但能提升推理能力,如DeepSeek R1体现后训练扩展法则 [8][9][19] 2. AI Agent产品表现:一些AI Agent产品如Mariner在美国市场表现良好,融资和用户增长迅速,在海外人力成本高的地区受众广泛,但在中国市场难推广 [2] 3. 大型科技公司资本开支:微软和Meta本季度未削减资本开支,对未来算力需求持坚定态度,若后续应用进展顺利,算力规划短期内不会下降 [40] 4. 过去一季度AI应用发展:过去一个季度多个AI应用发展迅速,如Mariner 3月月活访问量达2310万,Cursor有2000多万,微软3月产生50万亿个TOKEN,占季度总量一半 [38]