Workflow
AI算力大集群:继续Scaling
2025-06-16 00:03

纪要涉及的行业和公司 - 行业:AI 算力行业 - 公司:微软、Meta、Amazon、谷歌、OpenAI、AXIS、英伟达、博通、泰晶光天孚、Oracle、Skillz AI、DeepSeek、Gloster、X.AI 纪要提到的核心观点和论据 1. AI 算力需求趋势:未来 AI 算力需求显著增长,训练和推理端需求都会增加,纵向扩展规模化趋势更明显;当前市场主要反映推理需求,训练需求将成新一轮起点;4 月底起市场对 AI 算力需求存在预期差,美股季报显示微软、Meta 和 Amazon 资本开支超预期,2025 年下半年新 AI 叙事逻辑或重塑,大概率是模型迭代路径新发展 [1][2] 2. AI 算力集群发展前景:2025 年上半年推理需求预期上升,下半年训练需求预期增加,A股市场预期将提升;相关标的有 NVMe 链、SATA 链和光互联;若未来模型迭代依赖大集群,中美差距或拉大,中国可通过软件算法创新弥补但有不确定性,美国继续推进参数优化,各公司迭代方向各异 [1][3][4] 3. 中美 AI 领域发展差距:可能重新拉大,取决于未来一年大模型迭代路径;方向是继续预训练并利用大集群发展大模型,2025 年 Q3 是关键时间点 [1][5] 4. AI 模型迭代节奏:2025 年 Q3 是新一轮 AI 模型迭代起点,训练投入增加,市场共识或在 Q4 形成,2026 年 Q1 推理需求有望增长,可通过观察客户量预测未来节奏;2026 年下半年爆款模型出现概率较大 [1][6] 5. 集群在 AI 模型迭代中的作用:处理大规模计算任务时作用关键,模型参数量增大使对计算量、内存和通信要求增加,需更大集群支持;光互联技术受关注,但 DeepSpeed 出现标志算力通缩逻辑开启,降低对大型集群依赖 [1][7] 6. 不同公司迭代路径 - 谷歌:预计年底推出新双架构模型,通过架构创新优化 AI 能力 [15] - Meta:继续卷入数据层面,拥有大量社交平台数据,但仅增加数据量提升效果有限,收购 Skillz AI 增强技术实力,内部可能有人员调整 [15][16][18] - 微软:采取跟随策略,减少训练需求投资,转向推理战略,砍掉两个 GW 数据中心,但推理需求超预期使资本开支保持稳定 [25][26] - OpenAI:擅长通过增加预训练模型参数量提升效果,使用类似马斯克百万卡集群方法,2025 下半年到 2026 年该方法或成 AI 变化最大环节 [20] 7. 算力通胀与通缩逻辑 - 通胀逻辑:每个环节性能提升导致价值量增加,如模型参数增多、数据集庞大,对单卡性能、卡间互联速度和光模块规格要求提高 [30] - 通缩逻辑:模型变小,对集群规模要求减少,算力成本降低,DeepSpeed 出现标志算力通胀逻辑结束,开启通缩逻辑 [9] 8. 集群需求判断及发展趋势:应基于实际算力需求,而非等待爆款产品;目前 OpenAI 和 XAI 需要大集群,微软、谷歌、亚马逊和 Meta 是否需要待定;大厂最好策略是等待新技术架构出现再建大集群,现有数据中心无法满足需求时可通过 CGI 或 ECI 互联现有数据资源解决部分问题 [28] 其他重要但可能被忽略的内容 1. 后训练阶段影响:主要依赖强化学习算法,注重算法设计技巧,减少对大规模计算资源需求,降低模型成本,从去年 9 月到今年二季度全球大规模计算资源需求无显著增加 [13] 2. Meta 内部观点分歧:杨立昆和杰弗里·辛顿在大模型观点上存在分歧,杨立昆批评大模型,杰弗里·辛顿支持,这种分歧可能促使 Meta 进行管理层调整 [17] 3. 微软资本开支情况:砍掉两个 GW 数据中心后资本开支未下降,因推理需求超预期补足训练资源 [26] 4. 中国 AI 发展路径:因硬件基础设施限制,选择以算法优化为主的发展路径,通过异构计算和算法创新突破瓶颈,如 DeepSeek 采用稀疏架构等技术降低对硬件要求 [32][35] 5. 博通技术优势:胖猫通信技术扩宽通信通道,增强数据同步能力,通过动态自动化负载均衡优化数据加载和处理,支撑训练过程数据处理 [36] 6. 集群架构后端网络重要性:对带宽和卡性能要求高,是 scale up 的核心,使用 TOPO6 或更强带宽交换机芯片可扩大卡间交互带宽,对大规模集群建设整体性能优化至关重要 [39] 7. 2025 年 AI 算力市场预期变化:上半年 A 股市场对 AI 算力、推理和训练需求预期共振向下,下半年预期共振向上,波动源于市场预期变化,实际需求一直存在且较好,上半年供给端问题导致供给不足,下半年供给恢复市场预期将改善 [40]