Workflow
十五五重点科技方向之 - 量子通信产业
2025-10-23 23:20

行业与公司 * 纪要涉及的行业为量子通信与量子计算产业 [1] * 涉及的中国公司包括本源量子(超导)[1]、北京华羿(离子阱)[1][3]、安徽幺正(离子阱)[1][3]、武汉中科酷元(中性原子)[1][3]、上海图灵智算(光量子)[1][3]、北京波色(光量子)[1][3]、本源国盾(超导及稀释制冷剂)[8]、中微达信(测控系统)[13]、品准(激光器)[13][17]、普源光电(激光器)[13][17]、中船重工彭丽低温(低温真空系统)[17]、国盾(超导设备)[19]、国仪(离子阱设备)[19] * 涉及的海外公司包括IBM(超导,比特数达1,100多个)[3][4]、谷歌(超导)[1][13]、IONQ(离子阱)[2][13][18]、霍尼韦尔与剑桥合并后的QuantumNexus(离子阱)[13]、D-Wave(相干异星机)[13]、欧洲AQT公司(中性原子)[13]、美国QERA公司(中性原子)[13]、英伟达(人工智能与高性能计算)[23] 核心观点与论据:技术路线与比较 * 量子计算主流技术路线包括超导、离子阱、中性原子和光量子 [1][3] * 超导技术工程化进展领先,基于硅基半导体技术,制备工艺相对成熟,但良品率有待提升,且需要稀释制冷剂维持接近绝对零度的低温 [1][3][8] * 离子阱技术具有高保真度(单比特逻辑门达99.99%,双比特逻辑门达99.99%)和良好连接性,但面临束缚更多离子的工程化难题和激光操控精度要求高 [1][10] * 中性原子技术在囚禁大量量子比特数方面取得显著进展,例如2024年有研究达到6,100个,且不需要低温,具备天然优势 [1][11] * 光量子技术可以制备大量物理量子比特且构成简单,但纠错需要大量辅助比特(可能需上万个辅助比特纠正一个错误) [1][12] * 经典计算机基于硅基半导体和二进制,量子计算机物理构建依赖约瑟夫森结(超导)、光电产业(离子阱/中性原子)等,量子叠加态使其运算效率和存储能力远超经典计算机 [1][5] 核心观点与论据:产业进展与挑战 * 中国在超导领域,本源量子已建立产线实现小规模生产,但良品率待提升 [1][4] 国外IBM已实现1,100多个比特数并在实现"量子优越性"方面进展显著 [3][4] * 中国企业在量子计算领域与海外企业相比,在测控系统、稀释制冷剂的稳定性和体积控制、量子芯片及连接线缆(高质量线缆单价可达3,000美元)、离子阱芯片集成度、激光系统(离子阱需要6到7种不同波段激光器)以及工程化程度方面仍有提升空间 [2][13] * 稀释制冷剂技术难度高,需从几十开尔文精准降至毫开尔文,并解决内部布线热效应和设备体积问题,是跨学科高难度技术 [14] * 量子计算目前处于中等含噪声量子计算阶段,需要与经典计算机结合实现"超量融合",商业化应用已开始出现,例如合肥巢湖明月以1.13亿元采购三台量子计算机,中国移动也采购了相关系统 [2][17][19] * 规模化、实用化应用预计可能需要8至10年,但谷歌Vivo芯片和IONQ精度提高可能缩短时间表,2025年或2026年底需重新评估 [2][18] 核心观点与论据:重要概念与突破 * "量子优越性"指量子计算机在特定任务求解中远超经典电脑,超导技术是代表性路线,例如谷歌曾用53个量子比特在200秒内解决随机线路采样问题,而经典计算机需一万年 [1][2][6] * 谷歌近期开发"量子回声"算法,通过加入可检测噪声来验证量子优越性的真实性,使量子计算更可信 [22] * 美国科技公司如英伟达在人工智能、高性能计算等领域持续推进,将技术应用于医疗诊断、金融分析等场景 [23] 其他重要内容:政策与支持 * 中国在十四五规划中通过国家实验室(如潘建伟院士主持的实验室)和地方科技部门提供资金支持,例如粤港澳大湾区年资助经费约三亿元,苏州长三角创新中心也获政府资金 [20][21] * 十五五规划预计将加大技术发展的专门支撑政策 [21]