Workflow
2025年迈向智能驱动新纪元,大语言模型赋能金融保险行业的应用纵览与趋势展望报告-众安信科
搜狐财经·2025-05-01 06:57

大模型技术发展与行业机遇 - 全球大模型技术发展多元化,垂类大模型通过定制化训练提供精准行业解决方案,中国在算力自主化、数据优化等方面取得进展[1][24] - 新技术降低大模型训练、运维和推理成本,推动金融行业流程重构,企业需平衡购置、推理和运维成本[1][29] - 国产大模型如DeepSeek和通义千问在成本控制与推理性能上突破,实现数据安全合规、低成本高性能和中文语义优化[1][26][27] - DeepSeek通过混合专家技术将6710亿参数活跃计算量压缩至37亿,训练成本仅为同规模模型的6%[26] - 通义千问融合预训练与垂直领域优化能力,在对话交互、代码生成等场景形成专项突破[27] - 腾讯混元T1模型解码速度提升2倍,在中英文推理基准中领先[28] 大模型赋能保险全链 - 保险机构加速接入大模型,应用聚焦内部提效,覆盖业务全链条及中后台管理环节[1][16] - 初期优先选择容错成本低的场景如智能客服、智能质检、营销助手等,建立调试与反馈机制[6][7] - 大模型推动行业由结构化数据向多源动态信息系统演进,提升风险识别广度与响应及时性[8] - 金融机构经营理念重塑,呈现金融服务精准化跃迁和跨行业生态化协同两大趋势[9] - 银行利用实时企业数据优化信贷评估,保险与医疗平台合作开发预防型保险产品[9] 合作范式演变 - 数据要素价值凸显,金融保险行业通过横向、垂直和政企协同构建高质量数据集[1][19] - 政企协同推动数据要素流通,垂直整合构建企业级智能协同底座,横向协同拓展跨场景联动[19][42] - 多模态大模型为金融保险带来智能化转型机遇,填补非结构化信息处理能力空白[62] - 多模态模型应用于智能客服、理赔审核、欺诈识别等场景,提升审核准确率与风控能力[62] - 通义干问通过双核架构实现全模态实时交互,视觉推理模块采用链式思维增强方法[53] 技术演进与成本优化 - 垂类大模型通过行业特定数据集训练,减少计算成本并提供精准解决方案[33][40] - GPT-4级别模型单周期训练成本近5000万美元,垂类模型更经济高效[33] - 国产模型生态呈现功能分化趋势,语言生成模型与推理模型分别专注语义理解和逻辑决策[48] - 轻量化技术如蒸馏模型降低终端部署成本,Qwen-32B等模型实现对OpenAI-o1-mini的局部超越[49] - 模型部署从"可用"向"可适配"迈进,聚焦跨架构柔性部署机制构建[31]