边缘云技术革命 - 边缘云突破传统集中式计算模式 将数据处理能力下沉至网络边缘 实现数据快速响应和处理 [1] - 在AI大模型竞争中 行业焦点从训练阶段转向AI推理 边缘云成为新竞争焦点 [1] - 边缘云靠近节点 可提升数据交互和AI推理即时性与效率 同时保障信息安全 [1][5] AI推理需求爆发 - AI推理计算需求可能是训练需求的10倍甚至更多 企业更关注"后训练"阶段部署问题 [1] - 巴克莱报告指出 AI推理计算需求预计占通用人工智能总计算需求的70%以上 达训练需求的4.5倍 [3] - 英伟达创始人预测 推理算力需求规模增长将"轻松超过去年估计的100倍" [3] 行业技术动态 - OpenAI推出O1推理模型 Anthropic上线依赖推理的Agent功能 DeepSeek R1推理模型引发全球关注 [3] - DeepSeek采用跨节点专家并行模式 通过全面开源将AI推理资源池成本降至百卡/千卡范围 [4] - DeepSeek轻量灵活的部署方式已获科技、金融、政务等多行业接入 推动端侧AI爆发 [4] 边缘云核心优势 - 边缘云地理分布广泛 缩短交互链路 降低数据传输开销和成本 [5] - 边缘云节点容量大、健壮性强 结合边缘推理可支持企业数字化和智能化转型 [5] - 边缘侧提供额外能力如边缘缓存和安全防护 增强模型部署安全性 [5] 市场竞争要素 - 未来竞争核心在于成本/性能计算 包括推理成本、延迟和吞吐量 [6] - 边缘推理靠近终端用户和数据源 可提升用户体验和效率 同时满足"数据主权"需求 [6] - AI行业投资已开始转向推理 推理效率需综合评估吞吐量、时延和成本 [6]
AI推理时代 边缘云不再“边缘”
中国经营报·2025-05-09 23:09