具身智能发展现状 - 具身智能成为AI领域热点方向,人形机器人作为载体受到重点关注 [1] - 2025年可能成为具身智能"元年",行业竞争集中在多模态和具身智能领域 [3] - 英伟达提出AI发展四阶段论:感知AI→生成式AI→自主智能体AI→物理AI [3] - 具身智能发展仍处于早期爬坡阶段,离通用机器人还有较大距离 [31][32][33] 技术演进路径 - 大模型带动具身智能研究从精密控制向智能化、通用化方向迈进 [4] - 计算机视觉研究人员转向具身智能领域,因大模型提升了对物理世界的理解能力 [5] - 自动驾驶技术积累为具身智能提供重要基础,两者在感知、规划、控制模块高度相似 [15][16] - 具身智能系统需要具备世界模型和自我模型两大核心内部模型 [21][22] 商业化落地挑战 - 硬件成本和开发门槛居高不下是制约普及的关键因素 [10] - 垂直场景优先落地,工业、检修、家庭陪护是最具潜力的三大应用方向 [41][42][44] - 实验室精度与工业需求存在两个数量级差距,需持续提升系统精度 [40] - 早期商业化需配套大客户提供真实反馈和场景打磨 [39] 关键技术瓶颈 - 数据瓶颈是最大痛点,真实数据采集速度跟不上模型训练需求 [47][48] - 计算资源限制和模型架构挑战制约系统性能提升 [46] - 仿真环境难以完全还原真实世界物理特性,影响数据质量 [52] - 需突破自监督探索、生成式合成数据、少样本学习等数据解决方案 [53] 未来发展趋势 - 从性能优化转向适应性设计,强化环境适应能力 [55] - 从确定性控制转向概率性思维,应对现实世界不确定性 [55] - 从工具属性转向伙伴属性,实现更自然的交互协作 [55] - 模仿学习与强化学习融合、多智能体协作将成为重要突破方向 [59][60]
能空翻≠能干活,我们离通用机器人还有多远?