AI在数学领域的应用进展 - 美国国防高级研究计划局启动"指数性数学"计划 旨在开发提升数学研究效率的AI"合著者"系统 [1] - 新一代大型推理模型如OpenAI的o3和Anthropic的Claude 4 Thinking展现进步 在美国数学邀请赛中表现接近优秀高中生水平 [2] - 谷歌"深度思维"的AlphaProof系统结合语言模型与AlphaZero 取得与国际数学奥林匹克竞赛银牌得主相当的成绩 [2] - 谷歌AlphaEvolve模型在多个长期未解数学与计算难题上找到优于人类现有方案的解法 [2] AI当前在数学研究中的局限性 - 大型语言模型在FrontierMath测试中几乎集体"交白卷" 表明其面对全新高难度题目时能力不足 [3] - AI在解决"P vs NP"和"黎曼猜想"等重大数学难题时仍力不从心 竞赛题与真正数学研究存在差异 [2] - AI缺乏真正的创造力 能协助发现路径但无法实现真正的创新与突破 [8] AI处理数学问题的技术突破 - 加州理工学院团队开发"超级步骤"方法 将多个步骤打包以应对"超长推理链"问题 [5] - 该方法在安德鲁斯-柯蒂斯猜想上取得突破 推翻了一个40年来被广泛引用的"反例" [5] - "压缩路径"思路适用于所有需要推理链条的领域 有望推动数学研究新突破 [6] AI辅助数学研究的创新方式 - AlphaEvolve通过LLM生成并改进解题代码 配合评估模型提出比人类更优的解法 [7] - Meta的PatternBoost AI系统可生成相似数学概念 帮助激发研究灵感 [7] - AI工具可作为人类直觉的"侦察兵" 协助发现新路径和避开错误方向 [8]
AI成为数学家得力助手还要多久