AI下半场,大模型要少说话,多做事
虎嗅·2025-07-01 09:33
大模型性能与竞争格局 - DeepSeek模型性能快速提升 2024年4月排名靠后 8月进入TOP10 12月成为基础能力第一的开源模型[1] - 基础模型TOP10中中国占6个 美国占4个 包括通义千问 豆包 混元 文心等[3] - 模型排名轮动加速 GPT-4o曾保持200天第一 现在十几天就会变化[7] - 训练成本高企 每次至少几百万美元 保鲜期短导致玩家减少[8] 模型训练技术趋势 - 预训练与后训练并存 预训练提升基础能力 强化学习从实战中学习潜力大[14] - 下游企业减少参与训练 转向提示词工程 检索增强 工作流等工程化方法[9] - 智谱AI坚持预训练路线 技术团队实力和资源储备是关键[12] Agent发展与应用 - Agent成为运行在大模型上的软件 自主规划能力显著提升[21] - 提示词仍重要 精心设计的系统提示词可充分激发模型能力[22] - Agent可能不是单一产品 而是多功能集合 开发平台将成关键[29] - 未来或形成个位数基座模型+垂直行业应用平台的格局[30] 基准测试体系价值 - "方升"测试体系包含700万条数据 聚焦产业实战应用[1][44] - 测试方法标准化 题目非开源 每次抽取1-2万题后作废[47][48] - 基准测试是指挥棒 定义方向 中美差距缩小因目标一致[51] 技术路线与产业方向 - 谷歌DeepMind强化学习路线被低估 在生物 材料等领域价值巨大[34][37] - 当前模型缺乏世界模型能力 需突破空间关系 物理定律等[38] - AI下半场需减少信息过载 增强意图理解 任务规划等能力[52]