AI智能体设计组件 - 智能体包含三个核心组件:模型(Model)为推理和决策提供动力的LLM、工具(Tools)为执行操作的外部函数或API、指令(Instructions)定义行为方式的明确指导方针和防护措施[3] - 模型选择需考虑任务复杂性、延迟和成本,简单任务可用小模型处理,复杂决策需用更强模型[3] - 工具通过API扩展智能体能力,对于无API的遗留系统可依靠计算机使用模型通过UI交互[6] - 高质量指令可减少歧义改进决策,高级模型可根据文档自动生成指令[8] 智能体编排模式 - 多智能体系统可建模成图,智能体为节点,边代表工具调用或交接[11] - 监督者模式采用集中控制,群体模式采用去中心化交互[16] - 监督者模式通过创建监督者智能体来编排多个专业化智能体[17] - 群体协作模式让不同智能体能动态协作和交接任务[46] 智能体实现技术 - 函数调用是LLMs与工具交互的主要方式,工具通过利用底层应用API扩展能力[6] - 监督者模式实现包含定义工具、创建工作智能体、创建监督者智能体等步骤[19][20][21] - 群体协作模式实现包含定义工具函数、创建工作智能体、创建群体智能体等步骤[46][47] - 消息历史管理可控制包含完整历史或仅最终响应[28][30] 智能体运行机制 - 支持同步和异步两种调用模式,实时交互场景适合同步,耗时任务适合异步[51][52] - 输入必须是包含messages键的字典,纯字符串输入会自动转成HumanMessage[54][55] - 输出始终是字典结构,包含messages和可选structured_response字段[57] - 流式输出可实时获取增量更新,支持同步和异步两种方式[58][59] 智能体行业应用 - 行业协议如Anthropic的MCP协议和Google的A2A协议可优化智能体协作[70] - MCP协议通过三层架构破除工具壁垒,A2A协议聚焦智能体间协作[71] - Block公司采用MCP+A2A构建的代理系统使财务流程效率提升300%,错误率下降85%[72] - 微软正将MCP深度集成至Windows系统,预示操作系统将进化为基础代理平台[72]
AI智能体(八):构建多智能体系统
36氪·2025-07-28 07:12