AI Agent发展现状 - AI Agent正从被动响应迈向主动决策 成为连接数字世界与物理世界的核心枢纽 [1] - 具备推理、规划、记忆与工具使用能力的智能体正在重塑产业形态 涵盖企业Agent、学术Agent和个人Agent [1] - 2025年AI Agentic基础设施迎来爆发拐点 开源大模型突破提供认知"大脑" 模型上下文协议生态繁荣赋予灵活"四肢" [1] - 全球80%企业将在年内部署Agent 大脑与四肢的协同进化倒逼基础设施全面升级 [1] 企业应用痛点 - 早期RPA产品只能自动化简单单一工作流程 不具备真正智能且不能解决复合化复杂问题 [3][4] - 生成式AI出现后真正具备智能的Agent应用带来效率提升 但网页或App形式不适合专业开发者与企业用户 [5] - 本地部署面临五大核心痛点:AI推理算力限制、任务执行算力弹性不足、工具配置复杂、权限冲突问题、安全性差 [5][6][7][8][9] - 消费级设备无法部署高精度大模型 云端算力成为主流方案但存在弹性扩展难题 [6] - 超过43%的MCP服务节点存在未经验证Shell调用路径 83%部署存在配置漏洞 88%AI组件未启用防护机制 [9] - Agent缺乏长期记忆影响业务使用范围 语义记忆和场景记忆缺失限制任务完成能力 [10] 基础设施解决方案 - 云厂商竞相推出新一代Agent Infra架构:AWS AgentCore解决长时执行与状态记录 Azure AI Foundry集成Serverless计算 Google Vertex AI优化长时运行需求 [12] - 阿里云函数计算Function AI提供自主选择模型与工具的组装式设计 PPIO推出国内首个Agentic AI基础设施服务平台 [13] - 新一代基础设施聚焦长时运行、会话亲和、会话隔离、企业级IAM和VPC及模型框架开放等技术突破 [18] - 突破传统Serverless执行时长限制(如AWS Lambda15分钟上限)支持数分钟至数小时连续工具调用 [18][19] - 通过状态持久化、冷启动优化和开放集成解决LLM Agent持续推理、Workflow Agent状态流转和Custom Agent灵活定制需求 [22] - 开发范式从手动拼凑传统组件转向利用原生Infra实现高效安全可扩展的开发部署 [23] 市场机遇与发展趋势 - Agent Infra成为模型公司、云厂商和初创公司积极拓展领域 创业公司存在显著机会 [24] - 机会存在于现有Infra的AI-native需求环节 包括更快冷启动速度、更强隔离性及更好的AI workflow结合 [24] - 易用性高且价格合理的Infra产品有望被广泛采用 因Agent开发追求研发投入ROI [24] - 基础设施持续创新推动Agent生态共建 使开发变得像组装乐高积木一样便捷 [24]
Agent应用爆发,谁成为向上托举的力量?
36氪·2025-08-06 10:31