上下文工程指南
36氪·2025-08-11 07:10
上下文工程概念演进 - 提示工程已进阶为更全面的上下文工程 成为优化大语言模型任务执行的关键过程[3] - 上下文工程涵盖指令设计、动态上下文注入、结构化输出等系统化优化 远超简单提示的范畴[5] - 该领域获得Ankur Goyal、Walden Yan、Tobi Lutke、Andrej Karpathy等顶尖AI研究者重点关注[3] 核心技术要素 - 结构化输出要求定义明确字段:子任务需包含唯一ID、搜索语句、来源类型、时间范围、领域焦点和优先级共6个必填/选填字段[9][11] - 动态时间注入通过{{ $now.toISO() }}函数实现实时日期上下文 确保时效性查询准确性[9][15] - RAG缓存机制将用户查询子任务存入向量数据库 避免重复生成计划 降低API调用延迟和成本[16][17][18] 智能体工作流实践 - 搜索规划智能体将复杂查询拆解为2个子任务 要求覆盖不同信息维度和来源类型[9][11] - 输出采用标准化JSON格式 包含start_date/end_date等派生字段 由工具自动生成数据模式[12][13] - n8n等工具内置结构化输出功能 简化上下文工程实现流程[14] 行业应用价值 - 上下文工程使AI应用更动态经济高效 成为开发者核心竞争力[18][19][28] - 多模态模型上下文优化需求日益普及 超越文本型LLM范畴[5] - 自动化上下文处理被视为重要发展方向 当前工具仍处早期阶段[29][30]