AI技术发展瓶颈 - 随着算力和数据规模快速扩展,算法重要性再次凸显,成为未来AI技术发展的关键瓶颈 [1] - 强化学习成为算法研究新方向之一,但仍存在许多明显能力缺口 [1] - 基础研究正在回归,算法取代数据和算力成为关键制约因素 [21][22] 工程与科研的协同关系 - 工程与科研是驱动AI发展的两大引擎,工程师贡献与研究人员相仿甚至更大 [3][4] - OpenAI坚持工程与研究同等重要,两者需紧密合作解决复杂问题 [5][6] - 工程背景与科研背景人员对系统约束的理解存在根本性差异,需技术谦逊来调和 [6][7] 资源调配与产品化挑战 - 为支撑ChatGPT和ImageGen的海量需求,公司不得不抽调科研算力"抵押未来" [8][9] - 产品上线导致系统崩溃风险增加,需在资源协调中做出取舍 [8][9] - 公司理念是优先满足用户体验,推动技术快速落地 [10] AI编程范式演进 - "氛围编程"正从趣味应用向严肃软件工程转型,可改造遗留代码库 [11][12] - 未来代码库需模块化设计,通过高质量测试让模型填充细节 [13] - 软件工程需回归可维护性实践,最大化模型价值 [13] 训练系统与基础设施 - 长时间训练任务需优化检查点设计,强化学习系统状态保存更复杂 [14][15] - AGI开发需同步建设超级计算机,涉及大规模基础设施投资 [18][19] - 未来AI基础设施需兼顾计算密集型与低延迟两类需求 [16][17] 行业发展趋势 - 多样化模型库正在成形,经济系统将逐步由AI驱动 [24][25] - 特定领域Agent开发需大量定制工作,创造新商业机会 [24][27] - 医疗、教育等垂直领域需专业知识和责任框架 [26]
OpenAI掌门人曝GPT-6瓶颈,回答黄仁勋提问,几乎为算力“抵押未来”
36氪·2025-08-16 12:04