Workflow
从“内部世界”到虚拟造物:世界模型的前世今生
经济观察报·2025-08-21 16:25

谷歌DeepMind Genie 3模型 - 谷歌DeepMind发布Genie 3模型 能够根据文本或图像提示实时生成可交互的3D虚拟环境 例如输入"月球上的火山边"可生成相应场景并允许用户探索 [2] - Genie 3在实时交互能力上显著提升 支持记忆连贯性 如用户涂鸦后离开再返回 涂鸦仍保留 并引入"可提示的世界事件"功能 允许通过新指令动态改变环境 [2] - 该模型被视为通向通用人工智能(AGI)的"世界模型"路径 刷新AI生成内容边界 引发行业对"世界模型"技术路线的广泛讨论 [2][21] 世界模型技术发展史 - 世界模型灵感源自人脑构建"内部世界"的能力 早期AI研究如维纳的反馈控制理论和符号主义知识图谱已尝试模仿该机制 [6] - 1989年理查德·萨顿提出Dyna架构 结合强化学习与内部世界模拟 1990年施密德胡伯首次用RNN实现"世界模型"概念 但受限于当时技术条件未受重视 [6][7] - 2018年施密德胡伯团队发表《世界模型》论文 借助深度学习革命浪潮 该概念重新引发关注 谷歌DeepMind随后推出PlaNet(2019)和Dreamer(2020)等迭代产品 [7][8][9] 世界模型技术实现路径 - 核心技术包括表征学习(如VAE压缩多模态数据)、动态建模(嵌入物理规律避免模拟偏差)、控制规划(蒙特卡洛树搜索或强化学习)及结果输出(潜在空间渲染) [11][12][13][14] - 动态建模需解决因果关系学习难题 通过嵌入物理定律或多样化数据训练确保模拟准确性 例如抛掷物体需涵盖羽毛与铅球不同场景 [12] - 输出环节采用潜在空间生成再解码为像素 效率高于直接像素生成 多模态输出需结合声音、触觉等渲染技术 [14] 世界模型行业应用前景 - 具身智能领域:为机器人提供安全虚拟训练场 通过"做梦"式模拟降低试错成本 避免现实环境中的事故风险 [15][16] - 数字孪生领域:从被动模型升级为主动预测系统 实现设备故障预警、流程优化等"感知-预测-决策"闭环 [16] - 游戏娱乐领域:实时生成动态虚拟世界 提升NPC交互智能 未来或成为"虚拟社会"基础设施 支持大规模数字生活 [17] 行业技术路线争议 - Meta杨立坤认为世界模型是AGI必经之路 因其模拟人类"离线思考"能力 而大语言模型缺乏物理一致性推理 [21] - DeepMind哈萨比斯等学者持反对意见 指出AlphaGoZero等无模型方法已超越人类 显式物理建模可能受误差累积限制 [22] - 中间路线派主张隐式建模 如大语言模型通过参数隐含世界知识 虽可解释性差但能完成逻辑推演 技术路径应依任务需求选择 [23][24]