智能驾驶技术路径分化 - 智能驾驶行业出现VLA(视觉-语言-动作)与反VLA两大阵营分化 理想、小鹏、元戎启行支持VLA路线 华为、Momenta、博世、卓驭持反对立场 [1][27][43] - VLA技术通过引入语言桥梁实现隐式逻辑推理 旨在突破端到端模型90%性能瓶颈 提升系统认知与决策能力 [12][14][16] - 行业技术竞争焦点从纯技术路径转向资源分配策略与技术价值观博弈 [4][40][47] 端到端技术局限性 - 端到端模型存在两大缺陷:决策逻辑不透明(黑箱问题)及未见过场景处理能力缺失 [8][9] - 该模型可解决90%智驾难题 但剩余10%涉及安全的关键场景需依赖规则兜底 [10][11] - 当前行业共识认为端到端需结合规则代码保障基础交通规则遵守 [10] VLA技术优势与挑战 - VLA具备三维动态信息理解能力 如潮汐车道标识、交警手势 支持语音交互与风险预判 [19][20][21] - 技术落地面临三大挑战:多模态特征对齐困难、训练数据获取复杂度高、现有智驾芯片算力不足 [31][32] - VLA需7B-10B参数规模理想部署 但当前芯片带宽限制导致决策频率难以稳定维持10Hz [31] 阵营资源投入差异 - VLA路线需数十亿级资金投入 小鹏宣称仅投入数亿只能实现"微型VLA" [28][29] - 小鹏通过自研图灵芯片提供750TOPS算力 构建72B参数基座大模型支撑VLA [41] - 理想早期布局端到端+VLM融合 元戎启行聚焦英伟达Thor芯片应用 三方均具备人形机器人研发协同优势 [41][42] 替代技术路径发展 - 华为推出WEWA世界模型架构 通过端云结合降低时延 主张该路径为智驾终局解决方案 [36][37] - 地平线基于征程6P计算平台打造软硬一体方案 博世强化一段式端到端工程化量产能力 [43][45] - Momenta采用数据飞轮模式开发R6强化学习模型 强调商业可扩展性与成本控制 [46] 行业监管与发展阶段 - 监管政策禁止"自动驾驶"宣传用语 要求OTA升级需备案 智驾安全被提至绝对优先 [39] - L3政策未放开导致行业处于L2+功能优化阶段 用户感知的"利己效益"不明显 [39] - "车位到车位"功能落地后行业进入瓶颈期 技术突破需百倍级安全提升方能支撑L4落地 [35][38]
VLA:有人喊“最强解法”,有人说“跑不动”