Workflow
从被吹捧到沦为鸡肋,“AI”这个词用了还不到一年
36氪·2025-10-17 19:56

文章核心观点 - 当前AI行业的发展状况与历史上两次AI寒冬前的情景高度相似,存在技术泡沫、市场脱节及商业模型不可持续等问题,第三次AI寒冬可能正在来临 [1][4][6][7] 历史上的AI寒冬 - 第一次AI寒冬发生在1974-1980年,因计算机内存和处理能力有限,难以处理复杂实际问题,且早期AI系统无法有效利用人类常识和领域知识,导致政府大幅削减资金支持,AI研究陷入低谷 [2] - 第二次AI寒冬发生在1987-1993年,以专家系统为代表的AI因知识库有限、维护成本高且无法自动学习而失去商业价值,同时昂贵的专用AI硬件市场被性价比更高的台式计算机取代,导致AI硬件市场崩溃和投资撤离 [3] 当前AI行业面临的挑战 - 大模型训练成本高昂,存在严重幻觉问题,难以在企业垂直场景中落地应用,投入产出比极低 [5] - 许多AI产品开发脱离用户真实需求,功能与实际需求脱节,导致产品无人使用或被迅速淘汰 [5] - 企业数字化基础薄弱、业务流程不规范、数据孤岛严重等问题,阻碍了AI技术的有效落地 [6] - 资本市场缺乏耐心,一旦AI项目回报周期拉长便迅速撤资,转向其他风口 [6] 潜在第三次AI寒冬的成因 - 技术能力与社会预期之间存在巨大鸿沟,对通用智能概念盲目乐观 [4] - AI产品与现实市场需求脱节,缺乏可持续的商业发展模式和核心技术壁垒 [6] - AI公司普遍无法提供端到端的一体化解决方案,仅能提供单一功能模块 [6] - 企业和资本急于看到立竿见影的回报,不愿为AI技术的长期演进买单 [7]