Workflow
中国AI模型超美国模型,靠AI炒股的时代来了吗?
36氪·2025-10-26 17:20

实验概述 - 全球首次AI炒币实盘对决在Alpha Arena平台进行,六大中美顶级AI模型各获1万美元实盘资金,自由买卖BTC、ETH、SOL等主流加密货币[1] - 实验旨在测试AI模型在最真实、不可预测的金融市场中的表现,而非静态知识评估,模型需分析数据和市场情绪,如同真实交易员[2] - 实验提供了观察AI在真实市场中博弈的窗口,重点在于分析其买卖标的、持仓时长及止盈止损策略,而非仅关注收益结果[11] 参赛模型表现 - 开赛6天后,Qwen3 Max以20倍杠杆、近乎全仓的激进策略实现总收益13.41%,现金余额一度仅剩96.8美元,领先其他模型一天多[7] - DeepSeek Chat v3.1收益率曾接近40%,盈利超4000美元,后随大盘下跌回吐部分收益,收益率稳定在10%左右,位列前两名[3] - GPT-5亏损高达68.9%,表现持续下行;Grok-4因高频激进、涨跌均不割肉的策略,在实现超40%盈利后迅速跳水;Claude因理性保守、仓位轻、止损严,总收益为负17.46%[4] 模型能力背景分析 - DeepSeek由幻方量化团队训练,在金融和数学方面有积累,但此次大赛前的小规模测试中,GPT和Grok实现盈利,DeepSeek反而出现亏损[7] - 实验作为基准测试仍缺乏大样本、长时间、跨市场的数据积累,以及透明可复现的设置,存在较大随机性和不可靠性[9] AI在投资领域的应用现状 - 据路透社消息,至少十分之一的散户投资者已开始依赖ChatGPT或Gemini等聊天机器人筛选投资标的[12] - 券商eToro指出,使用AI选股要求使用者具备一定金融知识,否则试错成本高昂,且目前并无市场公允推荐的能高成功率预测市场的模型[12] - 多家券商已推出收费AI选股服务,如中国银河证券的“财富星AI投顾”包含AI选股、数据等功能;东方财富“妙想”模型分体验版、进阶版和专业版,季度费用从518元至818元不等[16][18] 金融大模型发展历程 - 2023年彭博社发布500亿参数的BloombergGPT,但其成本高昂、系统封闭,普通开发者无法触及,模型为黑箱运作,金融预测性提升感知不强[14] - 2025年8月清华大学发布开源项目Kronos,旨在利用时间序列大模型预测K线走势,但使用者反馈其观点判断过于平均市场化或臆造,预测结果难以信服[14] AI投资的局限性 - 大模型往往从市面挖掘有效因子,对矛盾之处缺乏深入推理,导致策略趋同,难以跑赢资金体量更大、信息调研更强的量化机构[15] - AI更擅长技术面分析,如趋势、成交量等;基本面分析多重复新闻和研报,仍需用户自行分析行业前景和盈利能力[21] - AI难以判断“黑天鹅”风险,对“灰犀牛”事件认知滞后,面对全新商业模式或颠覆性技术等“未知的未知”时可能犯灾难性错误[23][24] - 知名投资人段永平将AI投资定义为“高级的看图看线”,认为其是在优化“猜人心”的游戏,而非实践“估价值”的投资[23] 有效使用AI投资的要点 - 用户需比AI更懂投资,明确自身炒股目标和纪律,并注意AI数据的可靠性,具备被投资行业的常识[20][22][23] - AI输出质量高度取决于数据质量和提示词设计,用户需反复与AI解释强调以达成定义共识,例如对价值投资和“护城河”的理解[20][21] - 利用AI进行上市公司财报总结和行情基本分析是高效趋势,可将繁琐的文本图表任务交给AI,但选择模型不应以名气判断,而应根据自身目标考察完成度准确性,并保持频繁使用和调换[18][22]