当人工智能遇见图形数据库:利用多模态数据融合进行创新
36氪·2025-10-30 10:11
人工智能时代的数据挑战 随着智能技术革新各行各业,数据量和种类都呈现爆炸式增长。银行生成结构化交易记录、非结构化客户通话记录以及半结 构化的 JSON 档案。医院管理着自由文本的病历、数值化的实验室结果以及诊断图像。如此海量的多源异构数据已不再是例 外,而是常态。 传统数据系统专为孤立、单一格式的处理而构建,无法跟上时代的步伐。它们一次只能处理一种数据类型,无法理解它们之 间的丰富联系。但现代人工智能的要求更高:它需要从所有可用数据维度中获取全面、丰富的洞察。 挑战已经发生了变化。它不再仅仅关乎存储,而是关乎理解。在人工智能时代,系统必须模仿人类认知,将不同模态的不同 数据点连接起来,形成有意义的网络。 当前,多源异构数据的融合已成为必然趋势,而图数据库是解决这一问题的关键技术之一。 为什么我们需要图形数据库? 传统数据方法的局限性 传统数据处理方法在当今复杂的数据环境中难以应对。早期的存储模型创建了碎片化、孤立的"数据孤岛",彼此之间几乎没 有连接,几乎无法洞察数据全貌或挖掘数据中隐藏的真正价值。 以企业客户管理为例,客户的个人资料可能存储在一个表中,购买历史记录存储在另一个表中,服务交互信息则存储在另一 ...