数智化提升高校教育数据治理效能
新华日报·2025-11-18 07:21

人工智能在教育数据治理中的核心作用 - 人工智能是推动高校数智化转型的关键支撑 其数据 算法 算力三大核心要素中 数据是决定模型训练效果和应用效能的基础性资源[1] 教育数据治理模式的变革 - 教育教学主体结构从教师-学生二元关系转向教师-学生-机器三元协同 人工智能凭借深度学习和智能推理能力推动人机协同成为教育数据治理新形态[2] - 传统治理主要依赖业务系统产生的结果性数据 对教学过程性数据采集不足 需借助人工智能实现伴随式采集以丰富数据资源[2] - 传统治理以结构化数据为对象 对非结构化数据处理能力有限 需依托人工智能多模态技术拓展数据内容范畴[2] 教育数据质量的精准提升 - 传统数据质量保障模式依赖人工管理 工作效率低且难以保证准确性 无法及时识别逻辑语义错误[3] - 基于通用大模型构建数据治理智能体 可实现教育数据的智能融合 动态监测与精准改进[3] - 智能体可调用自然语言处理和多模态算法对多源异构数据进行智能清洗 对齐与融合 确保数据准确性与完整性[3] - 依托知识图谱及时识别相同主题下的不一致数据并进行标记提示 将质量管控从事后补救转向主动预防[3] 教育数据价值的深度释放 - 人工智能时代治理目标从问题解决向价值挖掘转变 需在确保质量与合规前提下推动数据开放共享与有效使用[4] - 将自然语言处理和数据挖掘等技术融入治理过程 实现智能化采集 清洗 标注及分类 提升跨系统跨部门数据流通效能[4] - 加强教育数据治理智能体应用 动态感知不同场景需求 灵活调整数据与资源分配策略 实现按需供给[4] - 运用智能算法分析教 学 研 管等行为数据及能力偏好习惯信息 构建师生精准画像 提供个性化数据支撑[4] 教育数据安全的规则保障 - 人工智能赋能过程中面临数据伦理 隐私侵犯 数据篡改伪造及信息茧房等风险挑战[6] - 需构建涵盖法律法规 教育规范与技术标准的规则体系 贯穿数据采集 处理和使用全过程[6] - 数据采集阶段应规范个人敏感信息收集 遵循公开透明与最小必要原则[6] - 数据处理阶段需制定数据清洗标注分类标准 采用高质量数据集训练 保证算法透明公正[6] - 数据使用阶段应对数据实施加密处理与访问权限设置 防范错误虚假信息传播[6]