文章核心观点 - 2026年将成为人工智能发展的关键分水岭,AI将从“AI+”的修补模式,演进为AI原生重构系统底层逻辑、物理AI打通虚拟与现实、多模态技术融合以及世界模型实现规律预判的深度变革阶段 [1] AI原生引发系统应用底层革命 - AI原生意味着以AI为系统设计的底层逻辑与能力中枢,驱动从技术架构、业务流程、组织角色到价值创造方式的全方位重塑,是AI未来发展的关键方向 [3] - AI原生架构与传统“AI+”架构存在根本差异:设计起点从现有业务流程转向AI能力边界;数据流向从业务系统抽取数据给AI模型,转变为数据实时流入AI中枢驱动业务;系统角色从“辅助工具”转变为“决策引擎”;迭代速度从月级提升至天级 [4] - 真正的AI原生系统具备三个显著特征:以自然语言交互为基础,实现GUI与LUI混合;具备自主学习和适应能力,能根据上下文和环境变化调整输出;具备基于大语言模型和知识库自主完成任务的能力,实现端到端闭环 [4][5] - AI原生开发平台趋势明确,低代码/无代码工具催生大量“一人公司”模式,巨头正将AI智能体深度嵌入办公套件实现端到端闭环 [8] - AI原生应用大规模普及的前提是具备完善的工具和框架体系,如部署管理大模型的Hub平台、自动化微调工具、知识图谱管理工具等,产品化工具的积累是其快速普及的关键 [8] - 在办公场景,AI原生应用可将知识工作者的重复劳动时间减少40%以上,2026年AI原生是To C端最确定的增量市场,其核心竞争力在于对用户习惯的重构 [8] - AI原生应用的技术架构、工具产品及方法论将在1~2年内演进并达到可大规模复用的成熟度,之后全面爆发,短期内“AI原生应用”与“传统应用+AI”将共存 [9] 物理AI向现实世界全面渗透 - 2026年的AI将以物理实体形态渗透到城市、工厂、医院、家庭等场景,实现从“感知”到“行动”的跨越,即物理AI [10] - AI发展经历三阶段:感知AI(理解图像、文字、声音)、生成式AI(创造文本、图像、声音),现在正进入物理AI时代,AI能够进行推理、计划和行动 [10][11] - 物理AI的技术基础建立在三个关键组件之上:世界模型(构建对三维空间及物理定律的理解)、物理仿真引擎(实时计算复杂物理交互)、具身智能控制器(生成具体控制指令) [11][12] - 物理AI成为主流趋势的原因:一是机器人、无人系统等智能设备的物理交互需求驱动,要求AI具备在真实环境中稳定、泛化的感知、理解与执行能力;二是AI技术演进加速赋能物理实体 [14] - IDC预测,到2026年,AI模型、视觉系统及边缘计算的进步将使机器人可实现的应用场景数量增加3倍,并在制造、物流、医疗、服务等多个领域广泛部署 [14] 多模态将成为AI基础能力 - 2025年,多模态大模型以强大的跨模态理解和推理能力,成为推动产业智能化升级和社会数字化转型的中坚力量 [15] - 多模态大模型能同时处理文本、图像、音频、视频、3D模型等多种数据类型,实现信息的深度融合与推理 [15] - 其能力体系围绕“跨模态理解”与“跨模态生成”两大核心构建:理解方面包括语义匹配、文档智能解析、多模态内容深层解读;生成方面可实现文本、图像、音频、视频等不同模态内容的相互生成 [15][16] - 多模态大模型还展现出多模态思维链和上下文学习等高级认知能力,为构建更接近人类认知方式的AI系统奠定了基础 [16] - 原生多模态技术路线成为重要进化方向,即在训练之初就将多种模态数据嵌入同一个共享的向量表示空间,实现不同模态间的自然对齐与无缝切换,无需文本中转 [16] - 2026年,多模态大模型将以前所未有的速度重塑各行各业,已在文物保护、安防、智能驾驶、内容创作、工业质检、政务服务等领域展现出巨大价值,正从实验探索迈向实际应用 [17] - 技术案例如Sora 2在视频与音频生成上实现物理逼真、镜头控制、音效同步等突破;Nano Banana Pro在图像生成与编辑方面支持多图融合、4K输出等 [17] 世界模型引爆AI新一轮增长 - 世界模型让AI从“数据驱动”转向“规律驱动”,通过构建虚拟世界模型模拟物理规则实现前瞻性决策,是2026年最具颠覆性和挑战性的领域 [19][21] - 世界模型的价值在于“泛化能力”,能够将已知场景的认知迁移到未知场景,例如让自动驾驶系统在未见过道路上基于物理规律理解安全行驶 [22] - 世界模型是一种能够对现实世界环境进行仿真,并基于多模态输入数据生成视频、预测未来状态的生成式AI模型,是AI系统对现实世界的“内在理解”和“心理模拟” [22] - 与大语言模型相比,世界模型的主要数据是感知数据、模拟数据和遥测数据;架构是编码器加潜在动态的混合架构;目标是预测环境状态以支持决策;训练范式是自监督或强化学习;应用集中于机器人、控制、模拟等领域;认知基础是物理性和因果性 [24] - 世界模型具有三大核心特点:内在表征与预测,能将高维观测数据编码为低维潜在状态并预测未来状态;物理认知与因果关系,能理解和模拟重力、摩擦力等物理规律;反事实推理能力,能进行假设性思考 [24][25] - 技术层面关键包括因果推理、场景重建时空一致性、多模数据物理规则描述等,全球主流模型有谷歌Genie3、英伟达COSMOS,国内有华为盘古、蔚来NWM等 [25] - 在自动驾驶领域,世界模型可生成高动态、高不确定性场景解决长尾问题,通过闭环反馈机制降低成本、提升效率,案例如蘑菇车联MogoMind实现实时数字孪生与深度理解服务 [25] - 在具身智能中,世界模型能提供大规模高质量合成数据解决数据缺口,并重塑开发范式,未来将构建“物理+心智”双轨建模架构 [26]
赛道分化加剧,2026年人工智能最强风口来袭
36氪·2025-12-03 16:57