公司战略与文化 - 公司本质上仍然是一家纯AI研究公司,核心目标是构建AGI,产品是研究自然流出的结果 [5][21][124] - 公司拥有约500名核心研究人员,内部同时进行约300个项目,通过每1-2个月梳理项目并分配算力来明确优先级 [5][14][15] - 公司采用自上而下押注方向与自下而上文化并存的研究模式,鼓励来自意想不到地方的好点子,并积极放大有前景的研究线索 [79][97] - 公司坚持开放文化,研究人员之间自由分享想法,认为通过速度压制对手比建立信息隔离更有效 [84] - 公司非常重视人才密度,并有意控制研究团队规模,认为甚至可能少于500人,同时通过管理实验确保高门槛 [129][130][131] - 公司在项目署名上持开放态度,被认为是行业内单位人数上对外部署名与个人功劳最大方的地方之一,旨在认可并打造AI超级明星 [133][134][136] 研究重点与进展 - 过去半年,公司研究重心重新聚焦于预训练,认为预训练领域仍有巨大潜力可挖掘,并对此非常有信心 [5][31][88][89] - 公司在“思考”(Reasoning)方向的研究已取得突破,并投入了巨量资源,该能力现已被广泛认为是不可或缺的 [20][86] - 公司内部已有性能达到Gemini 3的模型,并确定很快会发布,且能发布表现更好的下一代模型 [5][27] - 公司认为扩展定律(Scaling Law)并未失效,将继续扩大模型规模,并已有算法突破支持继续扩展 [89][114][116] - 公司设定了明确的研究目标:一年内让AI成为能提高效率的研究实习生;2.5年内实现AI端到端执行研究流程 [112][113] - 公司观察到AI在数学与科学领域产出实打实的新发现,标志着科研前沿推进发生了剧烈的阶段转变 [100][106] 竞争态势与人才争夺 - AI行业人才竞争激烈,Meta等公司采用激进的招聘策略(如高管亲自送汤),但公司在保护核心人才方面做得相当不错 [5][9] - 公司不会与竞争对手进行报价对标,即使面对远高于自身的报价倍数,许多人才仍因相信公司的研究路线和未来而选择留下 [11] - 公司也从竞争对手处学习激进的招聘方法,并积极争取明星人才,目标是为使命组建最强团队 [80] - 面对竞争对手发布新模型(如Gemini 3),公司会建立内部共识并进行试探,但强调不被竞争动态困住,坚持长期可持续的研究方式 [19][27] - 公司对DeepSeek等开源模型的崛起持冷静态度,认为应坚持自己的研究节奏持续创新,而非被外界叙事干扰 [128] 技术细节与算力需求 - 公司在“探索下一代范式”上投入的算力,比训练最终产物本身还要多 [16] - 公司的算力需求极为旺盛,如果今天多10倍算力,可能几周内就能全部用满,看不到需求放缓的迹象 [5][115] - 构建大型模型深度依赖工程能力,如优化内核速度、确保数值计算稳定等,没有这些则无法扩展到当前使用的GPU数量 [24][25] - 公司在数据效率相关算法上非常强,认为这是相对于竞争对手的一个优势 [116] - 公司在模型对齐与安全研究上投入巨大,特别关注随着模型能力增强可能出现的“谋划”(scheming)倾向,并设计了如不监督思考过程等重要工具来保持观察窗口 [137][140] 产品与未来展望 - 公司正在与Jony Ive合作开发硬件设备,旨在重新思考与AI的交互方式,使其具备更强记忆和持续学习能力 [117][118][119] - 未来的ChatGPT应具备更强的记忆和持续学习能力,能根据历史交互变得更聪明,而非每次重新思考 [118] - 公司推动“OpenAI for Science”计划,目标是打造工具与框架赋能全球科学家,加速诺贝尔奖级别的科学发现,而非仅让公司自身获奖 [101][102] - 公司认为AGI是一个过程而非某个具体完成点,更看重是否在持续产出新的科学知识和推进科学前沿 [99][100] - 公司认为当前正处于下一次工业革命的黄金时刻,变化将非常剧烈 [109][126]
OpenAI首席研究员Mark Chen长访谈:小扎亲手端汤来公司挖人,气得我们端着汤去了Meta