刚过完一岁生日的MCP,怎么突然在AI圈过气了
36氪·2025-12-08 18:47

文章核心观点 - Anthropic推出的MCP协议旨在标准化AI模型与外部工具的交互,初期被行业寄予厚望并获大厂支持,但因其存在技术缺陷、成本高昂及加剧模型幻觉等问题,在短期内迅速从行业焦点变得无人问津 [1][3][14] MCP协议的目标与愿景 - MCP旨在解决不同厂商AI产品各自为政、交互复杂的问题,通过标准化接口实现大语言模型与外部数据源及工具的无缝集成 [5][6] - 该协议被类比为AI领域的“USB-C接口”,试图通过能力协商、发现等机制,建立AI与工具、数据之间的桥梁,实现“万物互联” [6] - MCP为AI智能体提供了一个统一的工具调用规范,旨在将开发者从繁琐的适配工作中解放出来,在三个月内吸引了数千个工具自发接入 [8] MCP的初期热度与行业背景 - MCP在2024年冬季发布,但在2025年春季才成为AI圈头条,其走红过程与ChatGPT等产品的迅速席卷不同,更像是Anthropic、谷歌、微软等大厂默契推动的“预制爆款” [3] - 其走红与“2025年是智能体之年”的行业说法相契合,OpenAI首席执行官也将让ChatGPT自主执行任务列为2025年重点,为MCP的推广创造了背景 [8] MCP面临的技术挑战与缺陷 - 协议缺乏跟踪上下文传播机制,导致开发者无法知晓AI决策路径中具体调用了哪些工具 [10] - 缺乏截止时间传播机制,导致被调用的工具若出现问题,整个智能体会被卡住 [10] - 在云端部署时,为应对高并发,MCP的双连接模型在多服务器架构下引入了跨机器寻址的复杂性和高维护成本 [10] - 所有工具定义、调用请求和返回结果都必须经过模型的上下文窗口,导致所需处理的上下文容量随调用工具数量呈指数级提升,极大增加了Token消耗和成本 [12] - 若要减少Token消耗,就必须用规范流程调用特定工具,但这会牺牲MCP的灵活性和通用性优势 [12] MCP的核心缺陷与市场反应 - 随着调用工具数量的增加,智能体出现幻觉的概率同步上升,因为模型的注意力被稀释,导致胡乱决策,这对于需要“干活”的智能体而言是致命缺陷 [14] - 开发者在发现MCP除通用性外乏善可陈,且存在过多缺陷后,迅速对其失去了兴趣,导致其讨论度趋近于零 [1][14]