100万亿Token揭示今年AI趋势,硅谷的这份报告火了
36氪·2025-12-09 11:21

开源与闭源模型格局演变 - 开源模型使用量稳步增长,预计到2025年底将达到总用量的约三分之一,与闭源模型形成互补关系而非零和博弈 [5][7] - 中国开源模型成为增长主要引擎,其每周Token使用量占比从2024年底的1.2%最高激增至30%,平均占比为13% [5][9] - 开源模型市场从高度集中转向多元化,2025年上半年DeepSeek V3和R1占开源用量一半以上,但预计到年底没有单一模型能持续占比超25%,市场将由5-7个模型均分 [12] 模型形态与市场偏好变化 - 中型模型(参数在150亿至700亿之间)更受市场青睐,小模型(参数少于150亿)正在失宠,市场分化为强大的中型模型类别或整合到最强大的单个大型模型上 [15] - 开源模型不再被视为闭源“平替”,而是找到了特定场景的首选定位,开发者往往同时使用两类模型 [7] 推理模型与工具调用成为新范式 - 模型正从“语言生成系统”转变为“推理执行系统”,使用推理的Token用量从年初可忽略不计增长至超过50% [5][18] - 在所有推理模型中,xAI的Grok Code Fast 1使用的推理流量份额最大,领先于Gemini 2.5 Pro和Gemini 2.5 Flash [19] - 模型调用工具的功能使用占比上升,从最初集中于GPT-4o-mini和Claude 3.5/3.7系列,发展到更多模型支持,Claude 4.5 Sonnet等新玩家取得显著进展 [24] AI主要应用场景与使用方式演变 - 编程和角色扮演是AI模型的主要使用方式,编程查询用量从年初的11%上涨至最近的超50% [6][33] - 在所有编程模型中,Claude系列长期占据主导地位,大部分时间占比超过60%,但其在2025年11月市场份额首次跌破60% [36] - 在开源模型中,角色扮演使用量占比高达52%,中国开源模型DeepSeek的流量中有超过三分之二用于角色扮演和闲聊 [40] - 用户使用模式变复杂,从“写短文”到“解难题”,平均每次提示词长度增加约4倍,完成任务所需Token用量增加近3倍 [26][27][30] - 模型正变成“自动Agent”,用户给出复杂目标后,模型能自行规划步骤、调用工具并在长对话中保持状态以完成任务 [33] 主要厂商模型的应用侧重 - Anthropic模型80%以上流量用于编程和技术任务 [43] - xAI模型同样专注于编程,其技术应用、角色扮演及学术用途在2025年11月下旬显著增长 [47] - Qwen模型主要发力编程端,角色扮演和科学类任务占比随时间波动 [51] - OpenAI模型的工作重点从娱乐休闲活动逐渐转向编程和技术类任务 [53] 用户留存呈现“水晶鞋效应” - 大部分用户会快速流失,但每一代前沿AI模型发布时,会锁定一小批任务需求与其新能力完美匹配的“天选用户”,形成高粘性 [57] - 典型案例如Claude 4 Sonnet和Gemini 2.5 Pro,发布5个月后用户留存率仍保持40%高水平 [57] - “水晶鞋效应”窗口期很短,基本只在模型刚发布被视为“最前沿”的那段时间,一旦竞品发布抹平能力差距,再吸引新用户将非常困难 [57][60] 区域市场与语言使用变化 - AI不再是硅谷独角戏,亚洲地区付费使用量占比从13%翻倍至31% [61] - 北美仍是最大市场,但份额已不足50% [61] - 英语以82%份额占据绝对主导,简体中文以近5%份额位居第二 [61] 模型定价与使用量的关系 - 模型价格下降对使用量的影响比想象中小,价格下降10%,使用量仅增加0.5%-0.7% [61] - 存在“杰文斯悖论”,当模型变得足够便宜且好用,人们会在更多地方、用更长上下文、更频繁地调用,导致总Token用量飙升,总支出可能并不降低 [61]