MiniMax稀宇科技薛子钊:AI大模型不是"砸钱游戏",国内大模型被严重低估|Alpha峰会
华尔街见闻·2025-12-22 15:55

文章核心观点 - AI大模型行业与移动互联网有本质区别 其市场空间完全由模型智能水平驱动 且增长呈跳跃式而非连续性 每次智能跃升都会解锁全新应用场景和市场 [5][11][13] - 行业增长迅猛 全球头部模型层公司年化总收入已接近300亿美元 且月度环比保持双位数增长 但能持续发布全球领先模型的玩家数量却在减少 目前全球仅约10家 国内从“百模大战”演变为个位数公司竞争 [19][20][23] - 成功的核心壁垒并非单纯依赖资源堆砌 而在于能否构建高效的研发组织并持续创新 以跟上行业每3-6个月一次的快速迭代 资源雄厚的大厂若无法持续创新也会被淘汰 [6][20][22][23] - MiniMax是全球仅有的四家在语言、视频、声音三个模态均达到全球领先水平的公司之一 另外三家是OpenAI、谷歌和字节跳动 公司认为未来竞争将是全模态融合 [3][39] - MiniMax将超过80%的资源投入模型层和基础设施 视模型本身为核心产品 应用只是展示窗口 其战略是提供更高的“每块钱智能水平” 用更少资源做出更领先的模型 [3][30][38][40] 行业特点与趋势 - 市场驱动因素独特:行业市场空间唯一的核心驱动因素是模型的智能水平 其提升是非连续性的跳跃 例如GPT-3.5到GPT-4的跃升 每次跃升都会解锁此前不可行的新场景 [11][13] - 增长飞轮效应:模型智能提升解锁新场景 带来商业化收入 收入再投入研发推动智能进一步攀升 形成独特闭环 [14] - 颠覆性影响:随着模型智能水平从L2提升至接近智能体的L3级别 许多传统软件工作流程可能被模型自主完成 导致部分SaaS公司从AI受益者变为潜在被替代对象 其市场被划入大模型范畴 [16] - 多模态渗透加速:在视频生成领域 模型已用于辅助短剧制作和广告行业 在图像领域 专业修图场景正被AI取代 这些市场的渗透都随模型智能提升而进行 [17] - 玩家集中化:尽管市场高速增长 但能留在模型层持续竞争的玩家数量在减少 全球仅约10家 国内从“百模大战”的百家公司减少到个位数 [20][23] MiniMax公司战略与成果 - 全模态布局:公司自创立第一天起就同时研发语言、视觉和声音三个模态的大模型 旨在构建能通过图灵测试的全模态智能体 [25][26] - 研发高效性:作为独立创业公司 其资源消耗与美国头部公司相差两个数量级 但通过更高的研发和资金使用效率 实现了快速迭代和突破 [38] - 全球化运营:公司从第一天就是全球化公司 所有产品均服务全球用户 目前大部分商业化收入来自海外 [3][38] 各模态技术突破与市场地位 - 语言模型:2024年10月发布的M2语言模型是全球开源模型中真实token用量最大的AI编程模型 成为首个真正切入该领域的国产模型 其用量相当于其他所有国产模型的总和 在该场景用量份额排全球第三 [3][32][34] - 视频模型:海螺视频生成模型是全球用量最大的模型之一 与谷歌Veo、OpenAI Sora同属第一梯队 每天生成接近200万条视频 超过谷歌Veo上个季度公布的每日100多万条 [32][33] - 语音模型:公司的语音模型已实现从文字生成语音的突破 技术表现曾达到全球第一 驱动了大量智能硬件、虚拟主播及有声书内容 在国内市场与字节跳动合计占据几乎全部份额 [31] 产品与应用 - 核心产品为模型:公司认为底层模型是核心产品 而面向C端、B端和开发者的应用只是模型打包集成的渠道或展示窗口 [30] - 智能体应用:公司推出的Agent智能体产品在调研、写报告等任务上已超越普通实习生水平 内部HR、财务、商务分析等部门已高度依赖 未来可能自主完成简历筛选、联系候选人甚至面试 [3][39] - 代表性产品:包括海螺视频生成平台、陪伴类产品Talkie/星野 以及面向企业和开发者的开放平台 [30][38] 行业竞争与估值观察 - 技术差距缩小:国内大模型公司在技术上已接近甚至在某些领域超越美国同行 且差距持续缩小 [3] - 估值严重低估:国内公司与美国同行在估值上相差两个数量级 例如美国头部公司估值可能是中国公司的100倍 但技术领先可能只有5% 而投入却在50至100倍之间 相比之下国内公司研发效率更高但被严重低估 [3][38]