高盛报告核心观点 - 谷歌与博通合作的最新TPU v7芯片量产,其单位算力的推理成本暴降70%,这标志着ASIC专用芯片在AI推理成本上对通用GPU形成颠覆性优势,可能引发行业逻辑的根本性改变 [1][2][11] AI计算范式转变:从训练到推理 - AI行业正从“造车”(训练大模型)阶段进入“跑车接客”(模型推理)阶段,核心关注点从算力速度转向每单位计算成本 [3][4] - 高盛报告聚焦“推理成本”,TPU v7的70%成本降幅源于“系统工程能力的绝对碾压”,而非单纯的硬件性能提升 [5] - 类比说明:英伟达GPU像追求极致速度但高能耗的超跑,而谷歌TPU v7像高效运送大量乘客(处理海量Token)的高铁,在规模化任务中人均能耗(单位成本)优势显著 [6] TPU v7成本降低的技术路径 - 成本红利来自三个维度:芯片间数据传输等待时间几乎为零;封装更紧凑,计算模块与内存距离近,信号损耗少;ASIC架构专一,剔除了GPU中为通用计算保留的冗余功能,硅片利用率极高 [7][8] - TPU v7的绝对成本已与英伟达GB200 NVL72解决方案基本持平,改变了客户的选择逻辑,从“买不起英伟达的无奈妥协”转向基于性价比的主动选择 [9][10] - 对于Meta、微软等科技巨头,推理成本占运营成本大头,使用TPU有望大幅降低该成本,直接提升净利润 [10] Anthropic的210亿美元大单及其战略意义 - Anthropic签署价值210亿美元的定制芯片(ASIC)采购大单,覆盖从2025年底至2026年及以后的周期,金额相当于2024年全球一半AI初创公司的融资总额 [12][13] - 此举背后有谷歌、亚马逊等大金主支持,特别是谷歌作为二股东,资金通过博通转化为定制TPU算力 [14] - Anthropic的战略目标有三:第一,从“租房”(购买高价通用GPU)转向“买地”(自建定制ASIC算力),长远可节省大半成本 [15];第二,掌握“算力主权”,获得供应链的确定性和自主权,避免受制于英伟达的产能和分配 [16][17][18];第三,实现软硬一体极致优化,为自家Claude模型量身定制芯片,提升效率和性能 [19][20] - 这笔交易标志着大模型行业阵营分化加速,有资源和技术优势的巨头正通过定制化算力拉大与普通玩家的差距 [21] 博通的新角色与商业模式优势 - 在AI芯片新战场,博通完成了从“芯片设计公司”到“AI军火商总装厂”的身份跃迁,成为各大科技厂的“白手套”和“代工厂” [22][23] - 博通深度参与了谷歌TPU v7、亚马逊Trainium的核心技术,并承接了Anthropic的210亿美元定制订单 [23] - 其商业模式采用“NRE(定制研发费)+ 量产分成”模式,无论芯片最终成败都能先收取高额研发费,量产后再按颗抽成,收入确定性强,风险低于英伟达 [24][25] - 博通的核心技术壁垒在于先进的光互连技术和CoWoS封装能力,能够高效连接和堆叠数百个芯片而不发热、不堵车,这种“连接”技术比单纯设计GPU难度更高 [25] - 博通提供从电路设计、封装、测试到供应链管理的全套解决方案,大幅降低了科技公司自研芯片的门槛,推动了整个ASIC定制芯片市场的繁荣 [26][27] - 博通客户群分散(包括苹果、谷歌、亚马逊甚至英伟达),收入来源多元,抗风险能力强,在高盛看来,其在AI行业理性化过程中业绩确定性高于英伟达 [27] 对中国AI芯片行业的启示与机会 - 外部制裁倒逼中国AI行业加速发展ASIC专用芯片,走上与谷歌、亚马逊类似的道路 [28] - 华为昇腾及字节、腾讯、百度等公司均在推进自研芯片,逻辑与Anthropic一致,即通过定制化解决通用芯片获取难、成本高的问题 [29] - 国内AI芯片设计公司(如寒武纪、海光等)迎来黄金窗口期,只要性能达到英伟达的八成且价格减半,就可能获得大厂青睐 [29] - 中国行业现状是缺乏像博通那样掌握核心“连接”与“封装”技术的公司,在先进封装(如CoWoS、Chiplet)和光互连技术上与国际领先者存在代差 [30][31] - 投资机会明确存在于掌握“连接技术”和“封装技术”的上游企业,它们是产业链中稳定的“卖铲人”,例如光模块领域的光迅科技,先进封装领域的通富微电、长电科技 [31] - 若ASIC能将推理成本大幅降低(例如降至十分之一),将极大推动中国拥有海量数据和应用场景的行业(如短剧、游戏、电商、教育)爆发,关注点应从亏损的大模型公司转向能实现AI低成本落地的“场景玩家” [32][33] - 需警惕国内厂商一拥而上进行低价内卷导致利润微薄和技术低质化的风险,真正的机会属于拥有核心壁垒(独家模型算法、芯片架构或封装技术)的公司 [33]
博通打算做空英伟达