OpenAI的创新与结构性困境 - 随着竞争加剧与组织急速膨胀,OpenAI正逐渐陷入一种难以再承担真正高风险研究的结构性困境,一些前沿创新的研究方向已经难以在内部推进 [1] - 成本、增长压力等多重因素影响了OpenAI对风险的“胃口”,同时该公司尚未找到良好的跨团队研究协作模式 [3] - 对OpenAI来说,“集中力量办大事”已经变得有些困难,阻碍AI Lab研究的因素不是算力短缺,而是缺乏专注 [5] 行业竞争格局与路径趋同 - 当前全球范围内争夺“最佳AI模型”的竞争异常激烈且严苛,几乎所有主要AI公司都面临持续展示实力、不断推出最强模型的巨大压力 [8] - 目前大概有五家严肃的AI公司,使用几乎相同的技术配方,在同一技术基础上构建略有差异的产品,模型之间缺乏真正的多样性 [14][15] - 谷歌的崛起与其说是“回归”,不如说是OpenAI自己犯了错误,没能充分把握住自己的领先优势,OpenAI本应该持续领先 [3][47] 技术发展方向与AGI展望 - Transformer架构肯定不是最终形态,模型仍然可以通过多种方式改进,而其中许多路径至今尚未被系统性地实践 [12] - 实现AGI仍然缺失关键拼图,架构创新与持续学习是两大重要方向,AGI预计将会在2029年左右实现 [5][28][32] - 强化学习将卷土重来,在强大的世界表征(通过大规模预训练获得)之上,通过强化学习构建能力层级是未来的方向 [26][27] 人才流动与创新环境 - AI领域的人才争夺战已演变成一场肥皂剧,有些人频繁地更换工作,而真正投入到工作的时间不多 [4][44] - 明星AI研究员并不是驱动创新的核心因素,公司本身能否打造个人责任感强、允许探索和做大事的环境,可能更为关键 [4][66][67] - 研究人员的高薪酬水平可能带来副作用,使人们变得不愿意失去工作,更倾向于追逐短期回报,从而抑制了冒险精神 [18] OpenAI的内部文化与执行力 - OpenAI从2019年约30人发展到现在的几千人,但公司瞄准AGI、改变世界的野心始终没变 [7] - OpenAI早期有相当高比例的波兰裔员工,他们以勤奋和能识破“忽悠”著称 [45][46] - OpenAI真正擅长的是把研究从1推进到100,即采纳初步验证的想法,并找出如何让它们在大规模训练前沿模型时可靠地工作 [64] 对其他AI公司的评价 - 在过去一年里,对Anthropic的钦佩程度大幅上升,其起步更晚、资源受限,但成功构建了正在改变软件开发方式的卓越产品 [53][54] - Meta的策略可能是利用行业已掌握的AI技术来构建连接人和打造体验的产品,从其作为一家极其盈利的社交网络公司角度来看,这可能是一种相当不错的策略 [50][51][52]
在OpenAI“创新已经变得困难”,离职高管深喉爆料
36氪·2026-01-23 21:12